高级检索

PPS/CF复合材料电阻焊接工艺及性能评价

纪朝辉, 王宏洋, 孙凌丰, 路鹏程, 王志平

纪朝辉, 王宏洋, 孙凌丰, 路鹏程, 王志平. PPS/CF复合材料电阻焊接工艺及性能评价[J]. 焊接学报, 2020, 41(3): 80-85. DOI: 10.12073/j.hjxb.20191030001
引用本文: 纪朝辉, 王宏洋, 孙凌丰, 路鹏程, 王志平. PPS/CF复合材料电阻焊接工艺及性能评价[J]. 焊接学报, 2020, 41(3): 80-85. DOI: 10.12073/j.hjxb.20191030001
JI Zhaohui, WANG Hongyang, SUN Lingfeng, LU Pengcheng, WANG Zhiping. Study on resistance welding process of PPS/CF composite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 80-85. DOI: 10.12073/j.hjxb.20191030001
Citation: JI Zhaohui, WANG Hongyang, SUN Lingfeng, LU Pengcheng, WANG Zhiping. Study on resistance welding process of PPS/CF composite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 80-85. DOI: 10.12073/j.hjxb.20191030001

PPS/CF复合材料电阻焊接工艺及性能评价

基金项目: 中央高校中国民航大学专项(3122018L001);中国民用航空局科技基金(MHRD20160106);天津市自然科学基金(19JCQNJC02500).
详细信息
    作者简介:

    纪朝辉,1963年出生,博士,教授;主要从事表面工程方面的学术研究工作;已发表论文30余篇;Email: zhji@cauc.edu.cn

  • 中图分类号: TG453.9; TB332

Study on resistance welding process of PPS/CF composite

  • 摘要: 利用碳纤维织物电阻产热特性对PPS/CF层合板开展电阻焊接工艺研究. 试验验证了碳纤维电阻随温度升高而减小的变化规律,从而阐明了碳纤维通电发热非线性增长的原因. 通过DSC测试获得PPS熔融态温度区间,利用LSCM对接头微观形貌进行分析,结合接头的LSS试验结果,得到了PPS/CF层合板电阻焊接的主要焊接工艺参数(焊接温度、焊接压力和冷却速率)及其对接头成形和力学性能的影响规律. 结果表明,优化后的工艺参数为焊接温度390 ℃、焊接压力0.6 MPa、冷却速率20 ℃/min,此时的焊接接头抗剪强度最高,可达到母材自身抗剪强度的65%.
    Abstract: Using the heat production characteristics of carbon fiber fabrics to study the electrical welding process of PPS/CF laminates. The test proves that the carbon fiber resistance decreases with the increase of the temperature, and the carbon fiber heats up. The reason for the increase in nonlinearity. By the DSC test, the PPS melting temperature range was obtained. The micro-morphology of the joint was analyzed by LSCM. The LSS test of the joint was obtained. The main welding process parameters of the resistance welding of the PPS/CF laminate were obtained. (Welding temperature, welding pressure and cooling rate) and its influence on the joint forming and mechanical properties. The results show that the optimized process parameters are welding temperature 390 °C, welding pressure 0.6 MPa, and cooling rate 20 °C/min. At this time, the welded joint has the highest shear strength, which can reach the base material's own shear strength 65%.
  • 图  1   PPS/CF焊接试件尺寸图(mm)

    Figure  1.   Dimension scheme of PPS/CF specimen for welding

    图  2   PPS/CF层合板电阻焊接原理图

    Figure  2.   Schematic illustration for PPS/CF laminates welding

    图  3   热塑性复合材料电阻焊接试验平台

    Figure  3.   Resistance welding platform of thermoplastic composite

    图  4   碳纤维织物电流强度、电阻率和温度的关系

    Figure  4.   Relationship of current intensity and resistivity with temperature

    图  5   PPS/CF预浸料和PPS薄膜的DSC曲线

    Figure  5.   DSC curve of PPS/CF prepreg and PPS film

    图  6   不同焊接温度PPS/CF层合板焊接接头的抗剪强度

    Figure  6.   Shear strength of PPS/CF laminate joints with different welding temperature

    图  7   PPS/CF层合板不同焊接温度接头剪切断口的宏观形貌

    Figure  7.   Profiles of shear fracture of PPS/CF laminates with different welding temperature. (a) profiles of shear fracture at 360 °C;(b) profiles of shear fracture at 390 °C;(c) profiles of shear fracture at 420 °C

    图  8   PPS/CF层合板不同焊接温度接头横截面的微观形貌

    Figure  8.   Microscopic profiles of PPS/CF welding joints cross section with different temperature. (a) microscopic profiles at 360 °C;(b) microscopic profiles at 390 °C;(c) microscopic profiles at 420 °C

    图  9   PPS/CF层合板不同焊接压力接头的宏观形貌

    Figure  9.   Profiles of PPS/CF laminate joints with different welding pressures. (a) profiles at 0.4 MPa;(b) profiles at 0.6 MPa; (c) profiles at 0.8 MPa

    图  10   PPS/CF层合板不同焊接压力接头横截面的微观形貌

    Figure  10.   Microscopic profiles of PPS/CF welding joints cross section with different pressures. (a) microscopic profiles at 0.4 MPa; (b) microscopic profiles at 0.6 MPa; (c) microscopic profiles at 0.8 MPa

    图  11   不同焊接压力PPS/CF层合板焊接接头的抗剪强度

    Figure  11.   Shear strength of PPS/CF laminate joints with different welding pressures

    图  12   不同冷却速率PPS/CF层合板焊接接头的抗剪强度

    Figure  12.   Shear strength of PPS/CF laminate joints with different cooling rate

    表  1   PPS/CF层合板热压成形参数

    Table  1   Parameters of hot pressure shaping for PPS/CF laminate

    温度 T/℃排气压力 P1/MPa排气时间t1/s成形压力
    Pr/MPa
    成形时间t2/s
    3102161 800
    下载: 导出CSV
  • [1] 周雷敏, 孙沛. 波音787客机的复合材料国际化制造[J]. 高科技纤维与应用, 2013, 38(2): 64 − 68.

    Zhou Leimin. Sun Pei. International manufacturing of composite materials for Boeing 787 airliner[J]. Hi-Tech Fiber & Application, 2013, 38(2): 64 − 68.

    [2] 李志歆, 张治富, 高赛. 国产大飞机复合材料维修能力探究分析[J]. 航空维修与工程, 2019(3): 30 − 32.

    Li Zhixin, Zhang Zhifu, Gao Sai. Research on composite maintenance capability for domestic large aircraft[J]. Aviation Maintenance & Engineering, 2019(3): 30 − 32.

    [3]

    Stokes V K. Experiments on the induction welding of thermoplastics[J]. Polymer Engineering & Science, 2003, 43(9): 1523 − 1541.

    [4]

    Yousefpour A, Hojjati M, Immarigeon J P. Fusion bonding/welding of thermoplastic composites[J]. Journal of Thermoplastic Composite Materials, 2004, 17(4): 303 − 341. doi: 10.1177/0892705704045187

    [5]

    Jaeschke P, Wippo V, Suttmann O, et al. Advanced laser welding of high-performance thermoplastic composites[J]. Journal of Laser Applications, 2015, 27(S2): 90041 − 90047.

    [6]

    Acherjee B, Kuar A, Mitra S, et al. Experimental investigation on laser transmission welding of PMMA to ABS via response surface modeling[J]. Optics & Laser Technology, 2012, 44(5): 1372 − 1383.

    [7] 冯艳斌, 彭晓东, 谢卫东, 等. 玻纤增强热塑性复合材料超声波焊接方法研究[J]. 塑料工业, 2007, 35(9): 33 − 34.

    Feng Yanbin, Peng Xiaodong, Xie Weidong, et al. Research on ultrasonic welding method of glass fiber reinforced thermoplastic composites[J]. Plastic Industry, 2007, 35(9): 33 − 34.

    [8] 雷剑波, 王镇, 王云山, 等. 激光透射焊接聚甲基丙烯酸甲酯试验研究[J]. 中国激光, 2013, 40(1): 110 − 114.

    Lei Jianbo, Wang Zhen, Wang Yunshan, et al. Experimental study on laser transmission welding polymethyl methacrylate[J]. China Laser, 2013, 40(1): 110 − 114.

    [9]

    Zhang Y Y, Sun D Q, Su L, et al. Effect of electrode morphology on steel/aluminum alloy joint[J]. China Welding, 2019, 28(1): 16 − 27.

    [10] 杨景卫, 曹彪, 卢清华. 超声-电阻复合焊接方法及界面行为[J]. 焊接学报, 2018, 39(3): 26 − 30.

    Yang Jingwei, Cao Biao, Lu Qinghua. Ultrasonic-resistance composite welding method and interface line[J]. Transactions of the china Weldiry Enstitution, 2018, 39(3): 26 − 30.

    [11]

    Taylor N S, Jones S B. The feasibility of welding thermoplastic composite materials[J]. Construction & Building Materials, 1989, 3(4): 213 − 219.

    [12]

    Beevers A. Welding: the way ahead for thermoplastics[J]. Engineering, 1991, 231: 11 − 12.

    [13]

    Lambin C L T, Andersen S M, Holmes S T, et al. Apparatus and method for resistance welding: United State Patent, 5225025[P]. 1993-07-06.

    [14]

    Arias M, Ziegmann G. The impulse resistance welding: a new technique for joining Advanced thermoplastic composite parts[J]. Proceeding of the 41st International Sampe Symposium, 1996, 41: 1361 − 1371.

    [15] 姜庆滨, 王晓琳, 闫久春. 热塑性树脂基复合材料焊接研究[J]. 材料科学与工程, 2005, 13(3): 247 − 248.

    Jiang Qingbin, Wang Xiaolin, Yan Jiuchun. Research on welding of thermoplastic resin matrix composites[J]. Materials Science and Engineering, 2005, 13(3): 247 − 248.

    [16]

    Hou M, Yang M B, Beehag A, et al. Resistance welding of carbon fibre reinforced thermoplastic composite using alternative heating element[J]. Composite Structures, 1999, 47(1): 667 − 672.

图(12)  /  表(1)
计量
  • 文章访问数:  584
  • HTML全文浏览量:  33
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-29
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回