Effect of normalizing temperature on microstructure and properties of Ti-6Al-4V fabricated by arc additive manufacturing
-
摘要: 利用TIG电弧增材制造技术制备了TC4钛合金样件,并对样件进行了正火处理. 结果表明,经正火处理后的试样组织由α相和β相组成;在750 ~ 950 ℃范围内,随着正火温度的升高,针状初生α相变短变粗,并逐渐向网篮组织方向转变;在950 ~ 1 050 ℃温度范围内,随着温度的升高,部分初生α相聚合长大,并向着“伪等轴晶”方向转化,在1 050 ℃形成了“伪等轴晶”初生α相 + 细小针状初生α相 + 细小针状初生α相之间的α + β组织,针状初生α相随着温度的升高变短变细. 最佳条件(850 ℃/2 h/空冷)下y方向的抗拉强度900.4 MPa、屈服强度820.4 MPa、断后伸长率9.3%、断面收缩率27.4%,z方向的抗拉强度890.1 MPa、屈服强度790.1 MPa、断后伸长率10.8%、断面收缩率31.0%,其性能接近锻件标准要求;沉积态与正火处理态的硬度值变化不大;拉伸试样(y和z方向)断口形貌均布满韧窝,属于塑性断裂.
-
关键词:
- TC4(Ti-6Al-4V) /
- 正火处理 /
- TIG电弧增材制造 /
- 显微组织 /
- 力学性能
Abstract: The samples of TC4 titanium alloy were prepared by TIG arc additive manufacturing, and the samples were normalized. The results show that the microstructure of the sample is composed of α phase and β phase after normalizing treatment. And the acicular primary α phase becomes shorter and thicker with the increase of normalizing temperature at the range of 750 ~ 950 °C, and gradually changes to the direction of net basket structure. At the range of 950 ~ 1 050 °C, some primary α phases develop toward "pseudo-equiaxed crystals", and form structures which comprises the "pseudo-equiaxed crystals" primary α phase + the fine needle-like primary α phase + (α + β) structures between the fine needle-like primary α phases at 1 050 °C. The better mechanical properties of the present work (in conditions of 850 °C/2 h/AC) show that tensile strength, yield strength, elongation and reduction of the area in y direction are 900.4, 820.4 MPa, 9.3%, and 27.4% respectively, and tensile strength, yield strength, elongation and reduction of the area in z direction are 890.1, 790.1 MPa, 10.8%, and 31.0% respectively, which is close to the standard requirements for forgings. The hardness of sedimentary state and normalizing state has little changes. The fracture morphology of tensile specimen (z tensile specimen and y tensile specimen) is full of dimples and belongs to plastic fracture. -
-
表 1 Ti-6Al-4V的化学成分(质量分数,%)
Table 1 Chemical compositions of Ti-6Al-4V
材料 Al V C Fe H O N Ti 焊丝 6.08 4.15 0.012 0.04 0.097 0.088 0.062 余量 基板 6.10 4.0 0.08 0.03 0.015 0.2 0.03 余量 表 2 焊接工艺参数
Table 2 Processing parameters of additive manufacturing
焊接电流
I/A扫描速度
v1/(mm·s−1)送丝速度
v2/(m·min−1)焊丝与工件表面距离
L/mm焊丝与焊枪角度
α/(°)气体流量
q/(L·min−1)搭接率
δ(%)基板尺寸
mm × mm × mm160 8 1.4 3 40 10 40 100 × 100 × 20 表 3 电弧增材制造钛合金样件的热处理工艺参数
Table 3 Heat treatment parameter of titanium alloy fabricated by arc additive manufacturing
样品 加热温度
T/℃加热速度
v3/(℃·min−1)加热时间
t/h冷却方式 0 0 0 0 无 1 750 6 2 空冷 2 850 6 2 空冷 3 950 6 2 空冷 4 1 050 6 2 空冷 -
[1] Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2012, 541: 177 − 185. doi: 10.1016/j.jallcom.2012.07.022
[2] 陈志茹, 计霞, 楚瑞坤, 等. 热处理工艺对激光熔化沉积TC4钛合金组织性能的影响[J]. 金属热处理, 2018, 43(11): 144 − 149. Chen Zhiru, Ji Xia, Chu Ruikun, et al. Effect of heat treatment process on microstructure and properties of TC4 titanium alloy deposited by laser melting deposition[J]. Metal Heat Treatment, 2018, 43(11): 144 − 149.
[3] Fan Z C, Feng H W. Study on selective laser melting and heat treatment of Ti-6Al-4V alloy[J]. Results in Physics, 2018, 10: 660 − 664. doi: 10.1016/j.rinp.2018.07.008
[4] Tian D Y, Yan T Y, Gao Q Y, et al. Thermal cycle and its influence on the microstructure of laser welded butt joint of mm thick Ti-6Al-4V alloy[J]. China Welding, 2019, 28(3): 60 − 66.
[5] 勾健, 王志江, 胡绳荪, 等. CMT + P过程及后热处理对TC4钛合金增材构件组织和性能影响[J]. 焊接学报, 2019, 40(12): 31 − 35. Gou Jian, Wang Zhijiang, Hu Shengsun, et al. Effects of CMT + P process and post heat treatment on microstructure and properties of TC4 component by additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(12): 31 − 35.
[6] 卞红, 田骁, 冯吉才, 等. TC4/Ti60合金钎焊接头界面组织及力学性能[J]. 焊接学报, 2018, 39(5): 33 − 36. doi: 10.12073/j.hjxb.2018390117 Bian Hong, Tian Xiao, Feng Jicai, et al. Interfacial microstructure and mechanical properties of TC4/Ti60 brazed joints[J]. Transactions of the China Welding Institution, 2018, 39(5): 33 − 36. doi: 10.12073/j.hjxb.2018390117
[7] Bermingham M J, Nicastro L, Kent D, et al. Optimising the mechanical properties of Ti-6Al-4V components produced by wire +arc additive manufacturing with post-process heat treatments[J]. Journal of Alloys and Compounds, 2018, 753: 247 − 255. doi: 10.1016/j.jallcom.2018.04.158
[8] Brandl E, Schoberth A, Leyens C. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM)[J]. Materials Science & Engineering: A, 2012, 532: 295 − 307.
[9] Lin J J, Guo D J, Lü Y H, et al. Heterogeneous microstructure evolution in Ti-6Al-4V alloy thin-wall components deposited by plasma arc additive manufacturing[J]. Materials & Design, 2018, 157: 200 − 210.
[10] Wang F D, Williams S, Paul C, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44(2): 968 − 977. doi: 10.1007/s11661-012-1444-6
[11] Wu B T, Pan Z X, Ding D H, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 23: 151 − 160. doi: 10.1016/j.addma.2018.08.004
[12] Wang J, Lin X, Wang M, et al. Effects of subtransus heat treatments on microstructure features and mechanical properties of wire and arc additive manufactured Ti-6Al-4V alloy[J]. Materials Science and Engineering: A, 2020, 776: 139020. doi: 10.1016/j.msea.2020.139020
-
期刊类型引用(0)
其他类型引用(1)