高级检索

正火温度对电弧增材制造Ti-6Al-4V组织与性能的影响

徐国建, 柳晋, 陈冬卅, 马瑞鑫, 苏允海

徐国建, 柳晋, 陈冬卅, 马瑞鑫, 苏允海. 正火温度对电弧增材制造Ti-6Al-4V组织与性能的影响[J]. 焊接学报, 2020, 41(1): 39-43. DOI: 10.12073/j.hjxb.20191022002
引用本文: 徐国建, 柳晋, 陈冬卅, 马瑞鑫, 苏允海. 正火温度对电弧增材制造Ti-6Al-4V组织与性能的影响[J]. 焊接学报, 2020, 41(1): 39-43. DOI: 10.12073/j.hjxb.20191022002
XU Guojian, LIU Jin, CHEN Dongsa, MA Ruixin, SU Yunhai. Effect of normalizing temperature on microstructure and properties of Ti-6Al-4V fabricated by arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 39-43. DOI: 10.12073/j.hjxb.20191022002
Citation: XU Guojian, LIU Jin, CHEN Dongsa, MA Ruixin, SU Yunhai. Effect of normalizing temperature on microstructure and properties of Ti-6Al-4V fabricated by arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 39-43. DOI: 10.12073/j.hjxb.20191022002

正火温度对电弧增材制造Ti-6Al-4V组织与性能的影响

基金项目: 国家重点研发计划(2017YFB1103600)
详细信息
    作者简介:

    徐国建,1959年出生,博士,教授,博士研究生导师;主要从事增材制造及激光焊接技术等方面的研究;发表论文50余篇;Email:xuguojian1959@qq.com

  • 中图分类号: TG 422.3

Effect of normalizing temperature on microstructure and properties of Ti-6Al-4V fabricated by arc additive manufacturing

  • 摘要: 利用TIG电弧增材制造技术制备了TC4钛合金样件,并对样件进行了正火处理. 结果表明,经正火处理后的试样组织由α相和β相组成;在750 ~ 950 ℃范围内,随着正火温度的升高,针状初生α相变短变粗,并逐渐向网篮组织方向转变;在950 ~ 1 050 ℃温度范围内,随着温度的升高,部分初生α相聚合长大,并向着“伪等轴晶”方向转化,在1 050 ℃形成了“伪等轴晶”初生α相 + 细小针状初生α相 + 细小针状初生α相之间的α + β组织,针状初生α相随着温度的升高变短变细. 最佳条件(850 ℃/2 h/空冷)下y方向的抗拉强度900.4 MPa、屈服强度820.4 MPa、断后伸长率9.3%、断面收缩率27.4%,z方向的抗拉强度890.1 MPa、屈服强度790.1 MPa、断后伸长率10.8%、断面收缩率31.0%,其性能接近锻件标准要求;沉积态与正火处理态的硬度值变化不大;拉伸试样(yz方向)断口形貌均布满韧窝,属于塑性断裂.
    Abstract: The samples of TC4 titanium alloy were prepared by TIG arc additive manufacturing, and the samples were normalized. The results show that the microstructure of the sample is composed of α phase and β phase after normalizing treatment. And the acicular primary α phase becomes shorter and thicker with the increase of normalizing temperature at the range of 750 ~ 950 °C, and gradually changes to the direction of net basket structure. At the range of 950 ~ 1 050 °C, some primary α phases develop toward "pseudo-equiaxed crystals", and form structures which comprises the "pseudo-equiaxed crystals" primary α phase + the fine needle-like primary α phase + (α + β) structures between the fine needle-like primary α phases at 1 050 °C. The better mechanical properties of the present work (in conditions of 850 °C/2 h/AC) show that tensile strength, yield strength, elongation and reduction of the area in y direction are 900.4, 820.4 MPa, 9.3%, and 27.4% respectively, and tensile strength, yield strength, elongation and reduction of the area in z direction are 890.1, 790.1 MPa, 10.8%, and 31.0% respectively, which is close to the standard requirements for forgings. The hardness of sedimentary state and normalizing state has little changes. The fracture morphology of tensile specimen (z tensile specimen and y tensile specimen) is full of dimples and belongs to plastic fracture.
  • 图  1   构件宏观形貌

    Figure  1.   Macrostructure morphologies of component

    图  2   钛合金沉积构件取样位置示意图

    Figure  2.   Sampling positions for additive manufactured titanium alloy component

    图  3   拉伸尺寸示意图(mm)

    Figure  3.   Schematic of tensile specimen size

    图  4   不同状态下试样显微组织

    Figure  4.   Microstructure of specimen in different states. (a) as-deposited; (b) 750 ℃/2 h/ AC; (c) 850 ℃/2 h/ AC; (d) 950 ℃/2 h/ AC; (e) 1 050 ℃/2 h/ AC; (f) SEM morphology of the rectangle area

    图  5   X射线衍射分析结果

    Figure  5.   Analysis results of X-ray diffraction

    图  6   不同正火温度下样件的力学性能

    Figure  6.   Mechanical properties of the selected sample in different normalizing temperature. (a) y direction; (b) z direction

    图  7   沉积态及不同正火温度下的硬度分布值

    Figure  7.   Hardness distribution in deposited state and in different normalizing temperatures

    图  8   沉积态与正火态的拉伸试样断口形貌

    Figure  8.   Fracture morphology of sample in as-deposited and in normalized state. (a) y in deposited; (b) y in normalizing; (c) z in deposited; (d) z in normalizing

    表  1   Ti-6Al-4V的化学成分(质量分数,%)

    Table  1   Chemical compositions of Ti-6Al-4V

    材料 Al V C Fe H O N Ti
    焊丝 6.08 4.15 0.012 0.04 0.097 0.088 0.062 余量
    基板 6.10 4.0 0.08 0.03 0.015 0.2 0.03 余量
    下载: 导出CSV

    表  2   焊接工艺参数

    Table  2   Processing parameters of additive manufacturing

    焊接电流
    I/A
    扫描速度
    v1/(mm·s−1)
    送丝速度
    v2/(m·min−1)
    焊丝与工件表面距离
    L/mm
    焊丝与焊枪角度
    α/(°)
    气体流量
    q/(L·min−1)
    搭接率
    δ(%)
    基板尺寸
    mm × mm × mm
    160 8 1.4 3 40 10 40 100 × 100 × 20
    下载: 导出CSV

    表  3   电弧增材制造钛合金样件的热处理工艺参数

    Table  3   Heat treatment parameter of titanium alloy fabricated by arc additive manufacturing

    样品 加热温度
    T/℃
    加热速度
    v3/(℃·min−1)
    加热时间
    t/h
    冷却方式
    0 0 0 0
    1 750 6 2 空冷
    2 850 6 2 空冷
    3 950 6 2 空冷
    4 1 050 6 2 空冷
    下载: 导出CSV
  • [1]

    Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2012, 541: 177 − 185. doi: 10.1016/j.jallcom.2012.07.022

    [2] 陈志茹, 计霞, 楚瑞坤, 等. 热处理工艺对激光熔化沉积TC4钛合金组织性能的影响[J]. 金属热处理, 2018, 43(11): 144 − 149.

    Chen Zhiru, Ji Xia, Chu Ruikun, et al. Effect of heat treatment process on microstructure and properties of TC4 titanium alloy deposited by laser melting deposition[J]. Metal Heat Treatment, 2018, 43(11): 144 − 149.

    [3]

    Fan Z C, Feng H W. Study on selective laser melting and heat treatment of Ti-6Al-4V alloy[J]. Results in Physics, 2018, 10: 660 − 664. doi: 10.1016/j.rinp.2018.07.008

    [4]

    Tian D Y, Yan T Y, Gao Q Y, et al. Thermal cycle and its influence on the microstructure of laser welded butt joint of mm thick Ti-6Al-4V alloy[J]. China Welding, 2019, 28(3): 60 − 66.

    [5] 勾健, 王志江, 胡绳荪, 等. CMT + P过程及后热处理对TC4钛合金增材构件组织和性能影响[J]. 焊接学报, 2019, 40(12): 31 − 35.

    Gou Jian, Wang Zhijiang, Hu Shengsun, et al. Effects of CMT + P process and post heat treatment on microstructure and properties of TC4 component by additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(12): 31 − 35.

    [6] 卞红, 田骁, 冯吉才, 等. TC4/Ti60合金钎焊接头界面组织及力学性能[J]. 焊接学报, 2018, 39(5): 33 − 36. doi: 10.12073/j.hjxb.2018390117

    Bian Hong, Tian Xiao, Feng Jicai, et al. Interfacial microstructure and mechanical properties of TC4/Ti60 brazed joints[J]. Transactions of the China Welding Institution, 2018, 39(5): 33 − 36. doi: 10.12073/j.hjxb.2018390117

    [7]

    Bermingham M J, Nicastro L, Kent D, et al. Optimising the mechanical properties of Ti-6Al-4V components produced by wire +arc additive manufacturing with post-process heat treatments[J]. Journal of Alloys and Compounds, 2018, 753: 247 − 255. doi: 10.1016/j.jallcom.2018.04.158

    [8]

    Brandl E, Schoberth A, Leyens C. Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM)[J]. Materials Science & Engineering: A, 2012, 532: 295 − 307.

    [9]

    Lin J J, Guo D J, Lü Y H, et al. Heterogeneous microstructure evolution in Ti-6Al-4V alloy thin-wall components deposited by plasma arc additive manufacturing[J]. Materials & Design, 2018, 157: 200 − 210.

    [10]

    Wang F D, Williams S, Paul C, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44(2): 968 − 977. doi: 10.1007/s11661-012-1444-6

    [11]

    Wu B T, Pan Z X, Ding D H, et al. Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing[J]. Additive Manufacturing, 2018, 23: 151 − 160. doi: 10.1016/j.addma.2018.08.004

    [12]

    Wang J, Lin X, Wang M, et al. Effects of subtransus heat treatments on microstructure features and mechanical properties of wire and arc additive manufactured Ti-6Al-4V alloy[J]. Materials Science and Engineering: A, 2020, 776: 139020. doi: 10.1016/j.msea.2020.139020

  • 期刊类型引用(0)

    其他类型引用(1)

图(8)  /  表(3)
计量
  • 文章访问数:  403
  • HTML全文浏览量:  18
  • PDF下载量:  17
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-10-21
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回