高级检索

铝合金激光熔化沉积应力场及力学性能分析

陶汪, 王宪, 陈奥, 李俐群

陶汪, 王宪, 陈奥, 李俐群. 铝合金激光熔化沉积应力场及力学性能分析[J]. 焊接学报, 2020, 41(4): 62-66. DOI: 10.12073/j.hjxb.20191013002
引用本文: 陶汪, 王宪, 陈奥, 李俐群. 铝合金激光熔化沉积应力场及力学性能分析[J]. 焊接学报, 2020, 41(4): 62-66. DOI: 10.12073/j.hjxb.20191013002
TAO Wang, WANG Xian, CHEN Ao, LI Liqun. Stress field and mechanical properties of laser metal deposited aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 62-66. DOI: 10.12073/j.hjxb.20191013002
Citation: TAO Wang, WANG Xian, CHEN Ao, LI Liqun. Stress field and mechanical properties of laser metal deposited aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 62-66. DOI: 10.12073/j.hjxb.20191013002

铝合金激光熔化沉积应力场及力学性能分析

详细信息
    作者简介:

    陶汪,1981年出生,博士,副教授;主要从事激光焊接的科研和教学工作;发表论文30余篇;Email:taowang81@hit.edu.cn

  • 中图分类号: TG 456.7

Stress field and mechanical properties of laser metal deposited aluminum alloys

  • 摘要: 采用激光熔化沉积工艺对6 mm厚的ZL114A铝板中的通槽进行了修复试验. 试验中采用AlSi10Mg粉末作为沉积过程的填充材料. 为了选择合适的激光扫描方法,通过数值模拟的方式,探究了不同扫描路径下产生的残余应力情况. 模拟结果显示,相比于自一侧向另一侧平行扫描,自下向上逐层扫描方式更有助于减小残余应力,残余应力分布也更均匀. 采用自下向上的逐层扫描方式实现了铝板通槽的激光熔化沉积的工艺试验,并探索了缺陷及热输入对试件力学性能的影响. 结果表明,通过工艺试验得到的沉积试件,最优性能的试件抗拉强度为268 MPa,达到母材的89%. 试件断裂并未沿着沉积区与母材的界面处断裂,而是在沉积区内部层与层界面间的搭接区域断裂.
    Abstract: Through grooves in the 6 mm thickness ZL114A aluminum plate were repaired by the laser metal deposition process, and the filling powder was AlSi10Mg powder. In order to determine the scanning strategy, the residual stress generated with different scanning strategies was calculated by numerical simulation. The process of laser melting deposition was realized by the path scanning method with the smallest residual stress, and the influence of defects and heat input on the mechanical properties of the test workpiece was further studied. The results show that the layer-by-layer scanning strategy generated less the residual stress compared with the parallel scanning strategy. In terms of mechanical properties, by optimizing the process, the tensile strength of the tensile specimens has reached 268 MPa, which is 89% of the tensile strength of the substrate. Besides, the fracture location of the specimen was not along the interface between the deposition area and the substrate, but in the overlapping area between the deposition tracks.
  • 图  1   激光扫描方式示意图

    Figure  1.   Diagram of laser scanning strategies. (a) lay-by-lay scanning; (b) parallel scanning

    图  2   数值模拟模型

    Figure  2.   Numerical simulation model

    图  3   不同扫描方式下的残余应力分布

    Figure  3.   Residual stress distribution with different laser scanning strategies. (a) layer-by-layer scanning; (b) parallel scanning

    图  4   修复区与基体界面组织

    Figure  4.   Microstructure at the interface between deposition and substrate

    图  5   沉积区组织

    Figure  5.   Microstructure of deposition zone

    图  6   沉积区组织

    Figure  6.   Microstructure of deposition zone

    图  7   拉伸试件示意图

    Figure  7.   Diagram of tensile specimens

    图  8   拉伸试件曲线

    Figure  8.   Stress-strain curve of tensile specimens

    图  9   试件断口形貌

    Figure  9.   Fracture surface of tensile specimens

    图  10   试件断口中气孔形貌

    Figure  10.   Pores on fracture surface of tensile specimens. (a) dimples near pores;(b) microstructure between pores

    图  11   试件断裂位置

    Figure  11.   Fracture location of tensile specimen

    图  12   不同激光功率下试件的力学性能

    Figure  12.   Mechanical properties of specimens deposited with different laser power

    表  1   ZL114A与AlSi10Mg铝合金的化学成分(质量分数,%)

    Table  1   Chemical composition of ZL114A and AlSi10Mg aluminium alloy

    材料SiMgZnMnFeBeNiAl
    ZL114A 7.20.560.100.10.200.07余量
    AlSi10Mg10.10.350.040.20.090.01余量
    下载: 导出CSV
  • [1]

    Chang Yunfeng, Lei Zhen, Wang Xuyou, et al. Characteristic of laser-MIG hybrid welding with filling additional cold wire for aluminum alloy[J]. China Welding, 2018, 27(3): 35 − 41.

    [2] 汪汉萍, 杨晓益, 陈辉, 等. 130 mm铝合金扫描激光填丝焊接头微区组织和性能[J]. 焊接学报, 2019, 40(11): 87 − 92. doi: 10.12073/j.hjxb.2019400293

    Wang Hanping, Yang Xiaoyi, Chen Hui, et al. Micro-area organization and performance of 130 mm Al alloy scanning laser filler wire welded joint[J]. Transactions of the China welding institution, 2019, 40(11): 87 − 92. doi: 10.12073/j.hjxb.2019400293

    [3]

    Lei Zhen, Li Xiaoyu, Xu Fujia, et al. Laser-pulsed MIG hybrid welding technology of A6N01S aluminum alloy[J]. China Welding, 2017, 26(4): 10 − 19.

    [4]

    Deutsch M G, Punkari A, Weckman D C, et al. Weldability of 1.6 mm thick aluminium alloy 5182 sheet by single and dual beam ND: YAG laser welding[J]. Science and Technology of Welding and Joining, 2003, 8(4): 246 − 256. doi: 10.1179/136217103225005499

    [5]

    Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment[J]. Materials Science & Engineering A, 2016, 667: 139 − 146.

    [6]

    Ding Y, Muniz-lerma J, Trask M, et al. Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys[J]. MRS Bulletin, 2017, 41(10): 745 − 751.

    [7]

    Chen B, Yao Y Z, Song X G, et al. Microstructure and mechanical properties of additive manufacturing AlSi10Mg alloy using direct metal deposition[J]. Ferroelectrics, 2018, 523(1): 153 − 166. doi: 10.1080/00150193.2018.1392147

    [8]

    Javidani M, Arreguin-zavala J, Danovitch J, et al. Additive manufacturing of AlSi10Mg alloy using direct energy deposition: microstructure and hardness characterization[J]. Journal of Thermal Spray Technology, 2017, 26(4): 587 − 597. doi: 10.1007/s11666-016-0495-4

    [9] 刘昊, 虞钢, 何秀丽, 等. 送粉式激光熔覆中瞬态温度场与几何形貌的三维数值模拟[J]. 中国激光, 2013, 40(12): 78 − 85.

    Liu Hao, Yu Gang, He Xiuli, et al. Three-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding[J]. Chinese Journal of Lasers, 2013, 40(12): 78 − 85.

    [10] 董敢. 同轴送粉激光熔覆熔池数值模拟[D]. 长沙: 湖南大学, 2013.

    Dong Gan. Numerical simulation of molten pool in coaxial powder-feed laser cladding[D]. Changsha : Hunan University, 2013.

  • 期刊类型引用(2)

    1. 江小辉,戴园城,郭维诚,杨天豪. 层间距对棒材送进式搅拌摩擦沉积增材2219铝合金组织及力学性能影响. 焊接学报. 2025(02): 102-111 . 本站查看
    2. 何智,许知非,盛卫星,肖珺,陈树君. Al-Cu-Mg-Ag耐热合金的CMT电弧熔积特性. 焊接. 2025(03): 8-13+29 . 百度学术

    其他类型引用(0)

图(12)  /  表(1)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  62
  • PDF下载量:  26
  • 被引次数: 2
出版历程
  • 收稿日期:  2019-10-12
  • 网络出版日期:  2020-07-26
  • 刊出日期:  2020-07-26

目录

    /

    返回文章
    返回