高级检索

CFRP表面激光熔覆TC4 + AlSi10Mg复合涂层的组织与性能

陶汪, 苏轩, 陈曦, 陈彦宾

陶汪, 苏轩, 陈曦, 陈彦宾. CFRP表面激光熔覆TC4 + AlSi10Mg复合涂层的组织与性能[J]. 焊接学报, 2020, 41(5): 30-35. DOI: 10.12073/j.hjxb.20190924001
引用本文: 陶汪, 苏轩, 陈曦, 陈彦宾. CFRP表面激光熔覆TC4 + AlSi10Mg复合涂层的组织与性能[J]. 焊接学报, 2020, 41(5): 30-35. DOI: 10.12073/j.hjxb.20190924001
TAO Wang, SU Xuan, CHEN Xi, CHEN Yanbin. Microstructural characteristics and property of laser cladded TC4+AlSi10Mg composite coating on the CFRP surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 30-35. DOI: 10.12073/j.hjxb.20190924001
Citation: TAO Wang, SU Xuan, CHEN Xi, CHEN Yanbin. Microstructural characteristics and property of laser cladded TC4+AlSi10Mg composite coating on the CFRP surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 30-35. DOI: 10.12073/j.hjxb.20190924001

CFRP表面激光熔覆TC4 + AlSi10Mg复合涂层的组织与性能

基金项目: 中央高校基本科研业务费专项资金资助(HIT.NSRIF.2017003)
详细信息
    作者简介:

    陶汪,1981年出生,副教授;主要从事航空领域先进焊接技术等方面研究;发表论文50余篇;Email:taowang81@hit.edu.cn.

    通讯作者:

    陈彦宾,教授;Email:chenyb@hit.edu.cn.

  • 中图分类号: TG 453

Microstructural characteristics and property of laser cladded TC4+AlSi10Mg composite coating on the CFRP surface

  • 摘要: 采用激光熔覆技术在碳纤维增强热塑性塑料(carbon fiber reinforced thermoplastics, CFRP)表面成功地制备了TC4 + AlSi10Mg复合涂层. 通过扫描电镜、能谱仪和透射电镜分析了TC4 + AlSi10Mg复合涂层与CFRP基体连接的界面层微观结构、元素成分分布及相组成. 采用纳米压痕仪对复合涂层到基材的硬度变化规律进行测试. 结果表明,通过激光熔覆技术可以快速在CFRP材料表面形成连续的、均匀的TC4 + AlSi10Mg复合涂层. TC4 + AlSi10Mg复合粉末在激光作用下,受热熔化渗透到CFRP基体内部,形成良好的冶金结合,并在碳纤维-树脂-复合涂层之间形成连续的界面层. TC4 + AlSi10Mg复合涂层与CFRP基体连接的界面层相成分为TiC,Ti3Al,TiS2和Ti3AlC相. CFRP基体的平均硬度为10.15 HV,涂层的最高硬度可达1914 HV. 基于试验观察和理论分析,得出CFRP表面激光熔覆TC4 + AlSi10Mg复合涂层主要的界面反应机理为Ti(s) + C(s)→TiC(s),Al(l) + 3Ti(s)→Ti3Al(s).
    Abstract: TC4+AlSi10Mg composite coating was successfully prepared on the surface of carbon fiber reinforced plastics (CFRP) by laser cladding technology. Microstructure, elemental composition and distribution as well as phase composition of the interface layer between the TC4+AlSi10Mg composite coating and CFRP substrate were analyzed by scanning electron microscopy, energy disperse spectroscopy, and transmission electron microscopy. Hardness was measured by nanoindentor along the vertical direction from the composite coating to the CFRP substrate. Research findings showed that laser cladding technology could be applied to fabricate uniform and continuous TC4 coating on the surface of CFRP substrate. Upon the heat effect of laser cladding, the TC4+AlSi10Mg composite powder melted and then penetrated into the interior of the CFRP substrate, thus achieving a good metallurgical bonding. Finally, a continuous interface layer formed among carbon fiber, plastics, and composite coating. The interface layer between the TC4+AlSi10Mg composite coating and CFRP substrate was mainly composed of TiC, Ti3Al, TiS2, and Ti3AlC phases. The average hardness of the CFRP substrate was 10.15 HV, while the maximum hardness of the composite coating was 1 914 HV. In addition, based on experimental observation and theoretical analysis, the dominant interface reaction mechanism of the laser cladded TC4+AlSi10Mg composite coating on the CFRP surface can be drawn as follows: Ti(s) + C(s) → TiC(s), Al(1) + 3Ti(s) → Ti3Al(s).
  • 图  1   CFRP材料DSC分析曲线

    Figure  1.   DSC of CFRP

    图  2   TC4 + AlSi10Mg粉末显微形貌

    Figure  2.   Micromorphology of TC4 + AlSi10Mg powder

    图  3   激光熔覆涂层横截面形貌

    Figure  3.   Cross section morphology of laser cladding coating. (a) interface morphology; (b) top of coating; (c) middle of coating; (e) inferface

    图  4   Ti-Al二元合金相图

    Figure  4.   Binary phase diagram of Ti-Al alloy

    图  5   界面HAADF元素面分布

    Figure  5.   HAADF elemental plane distribution of interface. (a) HAADF image of interface; (b) C element distribution; (c) Ti element distribution; (d) Al element distribution

    图  6   界面相衍射分析

    Figure  6.   Phase diffraction analysis of interface. (a) bright field image of interface; (b) SAED pattem of Ⅰ area; (c) SAED pattem of Ⅱ area; (d) SAED pattem of Ⅲ area; (e) SAED pattem of Ⅳ area; (f) SAED pattem of Ⅴ area

    图  7   CFRP与涂层的结合机理

    Figure  7.   Bonding mechanism of the coating and CFRP. (a) initial stage; (b) reaction stage; (c) enlarged view of area A in Fig.7b; (d) final stage

    图  8   沿涂层深度方向显微硬度分布

    Figure  8.   Microhardness profile along depth direction of coating

    表  1   TC4钛合金的化学成分(质量分数,%)

    Table  1   Chemical composition of TC4 titanium alloy

    FeCNAlVHTi
    0.300.100.055.5~6.83.5~4.50.015其余
    下载: 导出CSV

    表  2   AlSi10Mg合金的化学成分(质量分数,%)

    Table  2   Chemical composition of TC4 titanium alloy

    SiMgMnCuFeZnAl
    9.20.480.210.260.840.25其余
    下载: 导出CSV

    表  3   图3标记区域的EDS分析结果(原子分数,%)

    Table  3   EDS results of marked areas in Fig. 3

    元素CAlSiVTi
    29.9415.351.011.8651.84
    6.0521.381.842.1868.55
    5.9721.681.42.7568.2
    11.5619.121.062.5665.7
    下载: 导出CSV

    表  4   图6a标记区域的EDS分析结果(原子分数,%)

    Table  4   EDS results of marked areas in Fig. 6a

    元素CAlSSiTi
    99.40.6
    54.530.4645.01
    24.271.5374.2
    0.335.6764.03
    5.1223.111.6270.15
    下载: 导出CSV
  • [1]

    Pan L, Yapici U. A comparative study on mechanical properties of carbon fiber/PEEK composites[J]. Advanced Composite Materials, 2016, 25(4): 359 − 374. doi: 10.1080/09243046.2014.996961

    [2]

    Chen C, Xie X, Xie Y, et al. Metallization of polyether ether ketone (PEEK) by copper coating via cold spray[J]. Surface and Coatings Technology, 2018, 342: 209 − 219. doi: 10.1016/j.surfcoat.2018.02.087

    [3]

    Wu S, Ma Z, Xiao G, et al. Study on properties of Al film on CFRP after cryogenic-thermal cycling[J]. Physics Procedia, 2011, 18: 279 − 284. doi: 10.1016/j.phpro.2011.06.095

    [4]

    Siegel J, Kotál V. Preparation of thin metal layers on polymers[J]. Acta Polytechnica, 2007, 47(1): 9 − 11.

    [5]

    Gonzalez R, Ashrafizadeh H, Lopera A, et al. A review of thermal spray metallization of polymer-based structures[J]. Journal of Thermal Spray Technology, 2016, 25(5): 897 − 919. doi: 10.1007/s11666-016-0415-7

    [6]

    Che H, Chu X, Vo P, et al. Metallization of various polymers by cold spray[J]. Journal of Thermal Spray Technology, 2018, 27: 169 − 178. doi: 10.1007/s11666-017-0663-1

    [7]

    Che H, Vo P, Yue S. Metallization of carbon fibre reinforced polymers by cold spray[J]. Surface and Coatings Technology, 2017, 313: 236 − 247. doi: 10.1016/j.surfcoat.2017.01.083

    [8]

    Ashrafizadeh H, Mertiny P, Mcdonald A. Determination of temperature distribution within polyurethane substrates during deposition of flame-sprayed aluminum–12 silicon coatings using Green's function modeling and experiments[J]. Surface and Coatings Technology, 2014, 259: 625 − 636. doi: 10.1016/j.surfcoat.2014.10.020

    [9]

    Gardon M, Latorre A, Torrell M, et al. Cold gas spray titanium coatings onto a biocompatible polymer[J]. Materials Letters, 2013, 106: 97 − 99. doi: 10.1016/j.matlet.2013.04.115

    [10]

    Dai J, Li S, Zhang H, et al. Microstructure and high-temperature oxidation resistance of Ti-Al-Nb coatings on a Ti-6Al-4V alloy fabricated by laser surface alloying[J]. Surface and Coatings Technology, 2018, 344: 479 − 488. doi: 10.1016/j.surfcoat.2018.03.060

    [11]

    Su X, Tao W, Chen Y, et al. Microstructural characteristics and formation mechanism of laser cladding of titanium alloys on carbon fiber reinforced thermoplastics[J]. Materials Letters, 2017, 195: 228 − 231. doi: 10.1016/j.matlet.2017.02.102

    [12] 傅卫, 方洪渊, 白新波, 等. 工艺路径对多层多道激光熔覆残余应力的影响[J]. 焊接学报, 2019, 40(6): 29 − 33. doi: 10.12073/j.hjxb.2019400150

    Fu Wei, Fang Hongyuan, Bai Xinbo, et al. Effect of process paths on residual stress of multi-layer and multi-pass laser cladding[J]. Transactions of the China Welding Institution, 2019, 40(6): 29 − 33. doi: 10.12073/j.hjxb.2019400150

    [13] 刘洪喜, 李庆铃, 张晓伟, 等. 激光熔覆Ti-Al金属间化合物复合涂层的显微组织和性能[J]. 中国有色金属学报, 2017, 27(6): 1140 − 1147.

    Liu Hongxi, Li Qingling, Zhang Xiaowei, et al. Microstructures and property of Ti-Al intermetallic compound composite coating prepared by laser cladding[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1140 − 1147.

    [14]

    Perng L. Thermal decomposition characteristics of poly (phenylene sulfide) by stepwise Py-GC/MS and TG/MS techniques[J]. Polymer Degradation and Stability, 2000, 69(3): 323 − 332. doi: 10.1016/S0141-3910(00)00077-X

    [15] 张作贵, 刘相法, 边秀房. Al-Ti-C系中TiC形成的热力学与动力学研究[J]. 金属学报, 2000, 36(10): 1025 − 1029. doi: 10.3321/j.issn:0412-1961.2000.10.004

    Zhang Zuogui, Liu Xiangfa, Bian Xiufang. Thermodynamics and kinetic of forming TiC in Al-Ti-C system[J]. Acta Metallurgica Sinica, 2000, 36(10): 1025 − 1029. doi: 10.3321/j.issn:0412-1961.2000.10.004

  • 期刊类型引用(12)

    1. 周浩南,孙文磊,王伟,张志虎. 面向涂层裂纹的激光熔覆预测模型研究. 热加工工艺. 2024(14): 27-32 . 百度学术
    2. 郑世茂,刘玉国,王豪,王新佩,陈洪堂. 长直焊缝自动焊接设备研究. 南方农机. 2023(10): 127-128+154 . 百度学术
    3. 王颖,高胜,吴立明. 基于胶囊网络的TIG熔透预测. 焊接. 2023(04): 15-20+28 . 百度学术
    4. 黄威威,游德勇,高向东,张艳喜,黄宇辉. 基于相关分析和神经网络的激光焊接稳态识别. 激光技术. 2022(03): 312-319 . 百度学术
    5. 吴月玉,张弓,林群煦,侯至丞,杨文林. 机器人TIG焊接的焊缝形貌遗传神经网络预测. 制造业自动化. 2022(07): 86-90 . 百度学术
    6. 刘秀航,黄宇辉,张艳喜,高向东. 基于BP神经网络补偿卡尔曼滤波的激光-MIG复合焊缝熔宽在线检测. 中国激光. 2022(16): 115-121 . 百度学术
    7. 陶永,兰江波,任帆,王田苗,江山,高赫,温宇方. 基于自适应模糊神经网络的机器人焊接焊缝外形预测方法. 计算机集成制造系统. 2022(11): 3643-3651 . 百度学术
    8. 刘天元,鲍劲松,汪俊亮,顾俊. 融合时序信息的激光焊接熔透状态识别方法. 中国激光. 2021(06): 228-238 . 百度学术
    9. 吴月玉,张弓,林群煦,侯至丞,杨文林,刘胜祥,徐群华,张雨航. 焊接机器人特征参数预测方法的研究综述与展望. 机床与液压. 2021(15): 168-173+199 . 百度学术
    10. 成慧翔,马艳娥,李新卫. 基于改进神经网络的激光焊接偏差智能识别研究. 激光杂志. 2021(12): 165-169 . 百度学术
    11. 火巧英,闫海宁,涂本荣,陆安进. 焊接工艺参数对Q345NQR2耐候钢激光焊焊缝成形的影响. 焊接技术. 2020(08): 16-18+105-106 . 百度学术
    12. 范鹏飞,张冠. 基于线性回归和神经网络的金属陶瓷激光熔覆层形貌预测. 表面技术. 2019(12): 353-359+368 . 百度学术

    其他类型引用(6)

图(8)  /  表(4)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  18
  • PDF下载量:  44
  • 被引次数: 18
出版历程
  • 收稿日期:  2019-09-23
  • 网络出版日期:  2020-09-26
  • 刊出日期:  2020-09-26

目录

    /

    返回文章
    返回