高级检索

不同组元活性剂对不锈钢脉冲TIG焊熔池表面张力的影响

顾玉芬, 边春红, 李春凯, 石玗

顾玉芬, 边春红, 李春凯, 石玗. 不同组元活性剂对不锈钢脉冲TIG焊熔池表面张力的影响[J]. 焊接学报, 2020, 41(6): 48-53. DOI: 10.12073/j.hjxb.20190911001
引用本文: 顾玉芬, 边春红, 李春凯, 石玗. 不同组元活性剂对不锈钢脉冲TIG焊熔池表面张力的影响[J]. 焊接学报, 2020, 41(6): 48-53. DOI: 10.12073/j.hjxb.20190911001
GU Yufen, BIAN Chunhong, LI Chunkai, SHI Yu. Effect of different component active fluxes on surface tension of weld pool in stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 48-53. DOI: 10.12073/j.hjxb.20190911001
Citation: GU Yufen, BIAN Chunhong, LI Chunkai, SHI Yu. Effect of different component active fluxes on surface tension of weld pool in stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 48-53. DOI: 10.12073/j.hjxb.20190911001

不同组元活性剂对不锈钢脉冲TIG焊熔池表面张力的影响

基金项目: 国家自然科学基金资助项目(51765037);甘肃省引导科技创新发展专项基金项目(2019ZX-08);甘肃省基础研究创新群体(17JR5RA107);省部共建有色金属先进加工与再利用国家重点实验室开放课题(SKLAB02019009).
详细信息
    作者简介:

    顾玉芬,1975年出生,硕士,副教授;主要从事新材料制备、异种金属连接及接头性能的研究;E-mail: guyf@lut.cn

  • 中图分类号: TG 444

Effect of different component active fluxes on surface tension of weld pool in stainless steel

  • 摘要: 准确获取焊接条件下熔池金属表面张力的基础数据对深入理解焊接过程中熔池金属流动及传热机制、焊缝缺陷形成等具有重要意义,但实时测量十分困难. 采用激光视觉法测量了单一组元(TiO2,CaF2)及二组元(30%TiO2 + 70%CaF2,70%TiO2 + 30%CaF2)活性剂下304不锈钢脉冲钨极氩弧焊熔池振荡频率,并根据特定模式下熔池特征频率与表面张力的解析模型计算了熔池金属表面张力,分析了不同组元活性剂对熔池金属平均表面张力的影响规律,在此基础上研究了不同组元活性剂对焊缝熔深的影响和增加熔深的机理. 结果表明,TiO2能够改变熔池金属表面张力温度梯度,使熔池金属流动方向发生变化,CaF2能够降低熔池金属表面张力绝对值,使熔池金属流速增加;二组元活性剂增加熔深是熔池金属流速增加和表面张力温度梯度改变共同作用的结果.
    Abstract: Acquiring the basic data of the surface tension of molten metal under welding condition is of great significance for understanding the physical mechanism of weld process,such as metal flow behavior, heat transfer mechanism and defect formation.However, real-time measurement is very difficult. The oscillating frequency of weld pool in 304 stainless steel with single component (TiO2 ,CaF2 ) and two component (30%TiO2 + 70%CaF2 , 70%TiO2 + 30%CaF2) activating fluxes was measured by laser-vision method. According to the analytical model of the characteristic frequency and surface tension of the molten metal in a specific mode the surface tension of the molten metal was calculated. The influence of different components of the activating fluxes on the average surface tension of the molten metal is analyzed. Experimental results revealed that TiO2 activating flux can convert the surface tension gradient and change the flow direction of the molten metal. CaF2 activating flux can reduce the absolute value of surface tension and increase the flow velocity of the weld pool. The increase of penetration in two component activating flux is the result of the combination of the increase of the flow velocity of the weld pool and the change of surface tension temperature gradient.
  • 图  1   传感系统

    Figure  1.   Sensing system

    图  2   母材表面涂覆CaF2时典型的反射激光条纹

    Figure  2.   Typical reflected laser pattern image with CaF2 activating flux

    图  3   母材表面涂覆CaF2时熔池的振荡信号

    Figure  3.   Oscillation signal of weld pool with CaF2 activating flux. (a) time domain; (b) frequency domain

    图  4   不同组元活性剂下焊缝截面形貌

    Figure  4.   Cross-section of weld beads with different component activating fluxes. (a)10 s; (b)15 s

    图  5   不同组元活性剂下焊缝几何尺寸随焊接时间的变化

    Figure  5.   Change of weld geometry with welding time under different component activating fluxes. (a) weld width; (b) penetration depth

    图  6   不同组元活性剂下熔池的振荡频率

    Figure  6.   Oscillation frequency with different component fluxes

    图  7   不同组元活性剂下熔池平均表面张力随焊接时间的变化

    Figure  7.   Change of average surface tension of weld pool with average current under different component activating fluxes. (a) no flux; (b) TiO2; (c) CaF2; (d) 30%TiO2 + 70%CaF2; (e) 70%TiO2 + 30%CaF2

    表  1   304不锈钢化学成分(质量分数,%)

    Table  1   Chemical compositions of 304 stainless steel

    CMnPSiCrNiCuNMoFe
    0.001 51.590.0280.04818.178.010.057 90.053 10.037 4余量
    下载: 导出CSV

    表  2   试验焊接参数

    Table  2   Experimental weld parameters

    峰值电流 IP/A基值电流 Ib/A占空比 σ (%)脉冲频率 f1 /Hz焊接时间 t/s高速摄像采样频率 f2 /fps
    17060403.55 ~ 251 000
    下载: 导出CSV
  • [1]

    Benedetto F E, Zolotucho H, Prado M O. Critical assessment of the surface tension determined by the maximum pressure bubble method[J]. Materials Research, 2015, 18(1): 9 − 14. doi: 10.1590/1516-1439.232513

    [2]

    Gurevich S M, Zamokov V N, Kushirenko N A. Improving the pene-tration of titanium alloys when they are welded by tungsten arc process[J]. Automatic Welding, 1965, 18(9): 1 − 5.

    [3] 董文超, 陆善平, 李殿中, 等. 焊接电弧与活性组元对TIG焊熔池形貌影响的数值模拟[J]. 焊接学报, 2009, 30(11): 49 − 52. doi: 10.3321/j.issn:0253-360X.2009.11.013

    Dong Wenchao, Lu Shanping, Li Dianzhong, et al. Numerical simulation of the influence of welding arc and active component on the morphology of TIG welding pool[J]. Transactions of the China Welding Institution, 2009, 30(11): 49 − 52. doi: 10.3321/j.issn:0253-360X.2009.11.013

    [4] 马壮, 于秀秀, 时海芳, 等. 粉煤灰A-TIG熔池流动行为及焊缝性能分析[J]. 焊接学报, 2017, 38(9): 65 − 69.

    Ma Zhuang, Yu Xiuxiu, Shi Haifang, et al. Analysis of flow behaviar and weld performance fly ash A-TIG molten pool[J]. Transactions of the China Welding Institution, 2017, 38(9): 65 − 69.

    [5]

    Hung Yong, Ren Cao, Ren Qinglong. The element transfor behavior ofgas pool coupled activating TIG welding[J]. China Welding, 2018, 27(4): 1 − 9.

    [6]

    Li Chunkai, Shi Yu, Gu Yufen, et al. Effect of oxide on surface tension of molten metal[J]. Rsc Advances, 2017, 7(85): 53941 − 53950. doi: 10.3321/j.issn:0253-360X.2009.02.010

    [7]

    Xiao Y, Den Ouden G. Weld pool oscillation during GTA welding of mild steel[J]. Weld Journal, 1993, 72: 428s − 434s.

    [8]

    Shi Y, Li C K, Du Leim, et al. Frequency characteristics of weld pool oscillation in pulsed gas tungsten arc welding[J]. Journal of Manufacturing Processes, 2016, 24: 145 − 151. doi: 10.1016/j.jmapro.2016.08.010

    [9] 石玗, 李春凯, 顾玉芬, 等. 脉冲钨极气体保护焊熔池振荡频率激光视觉测量[J]. 上海交通大学学报, 2016, 50(12): 1910 − 1914.

    Shi Yu, Li Chunkai, Gu Yufen, et al. Laser vision measurement of oscillation frequency of pulsed tungsten gas shielded welding pool[J]. Journal of Shanghai Jiaotong University, 2016, 50(12): 1910 − 1914.

    [10]

    Traidia A, Roger F. Numerical and experimental study of arc and weld pool behaviour for pulsed current GTA welding[J]. International Journal of Heat & Mass Transfer, 2011, 54(9): 2163 − 2179.

    [11]

    Li Chunkai, Shi Yu, Gu Yufen, et al. Effects of different activating fluxes on the surface tension of molten metal in gas tungsten arc welding[J]. Journal of Manufacturing Processes, 2018, 32: 395 − 402. doi: 10.1016/j.jmapro.2018.03.001

    [12]

    Leconte S, Paillard P, Chapelle P, et al. Effects of flux containing fluorides on TIG welding process[J]. Science & Technology of Welding & Joining, 2013, 12(2): 120 − 126.

    [13]

    Lu Shanping, Fujii H, Sugiyama H, et al. Mechanism and optimization of oxide fluxes for deep penetration in gas tungsten arc welding[J]. Metallurgical & Materials Transactions A, 2003, 34(9): 1901 − 1907.

  • 期刊类型引用(3)

    1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
    2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
    3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术

    其他类型引用(2)

图(7)  /  表(2)
计量
  • 文章访问数:  478
  • HTML全文浏览量:  53
  • PDF下载量:  20
  • 被引次数: 5
出版历程
  • 收稿日期:  2019-09-10
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2020-09-26

目录

    /

    返回文章
    返回