Effect of different component active fluxes on surface tension of weld pool in stainless steel
-
摘要: 准确获取焊接条件下熔池金属表面张力的基础数据对深入理解焊接过程中熔池金属流动及传热机制、焊缝缺陷形成等具有重要意义,但实时测量十分困难. 采用激光视觉法测量了单一组元(TiO2,CaF2)及二组元(30%TiO2 + 70%CaF2,70%TiO2 + 30%CaF2)活性剂下304不锈钢脉冲钨极氩弧焊熔池振荡频率,并根据特定模式下熔池特征频率与表面张力的解析模型计算了熔池金属表面张力,分析了不同组元活性剂对熔池金属平均表面张力的影响规律,在此基础上研究了不同组元活性剂对焊缝熔深的影响和增加熔深的机理. 结果表明,TiO2能够改变熔池金属表面张力温度梯度,使熔池金属流动方向发生变化,CaF2能够降低熔池金属表面张力绝对值,使熔池金属流速增加;二组元活性剂增加熔深是熔池金属流速增加和表面张力温度梯度改变共同作用的结果.Abstract: Acquiring the basic data of the surface tension of molten metal under welding condition is of great significance for understanding the physical mechanism of weld process,such as metal flow behavior, heat transfer mechanism and defect formation.However, real-time measurement is very difficult. The oscillating frequency of weld pool in 304 stainless steel with single component (TiO2 ,CaF2 ) and two component (30%TiO2 + 70%CaF2 , 70%TiO2 + 30%CaF2) activating fluxes was measured by laser-vision method. According to the analytical model of the characteristic frequency and surface tension of the molten metal in a specific mode the surface tension of the molten metal was calculated. The influence of different components of the activating fluxes on the average surface tension of the molten metal is analyzed. Experimental results revealed that TiO2 activating flux can convert the surface tension gradient and change the flow direction of the molten metal. CaF2 activating flux can reduce the absolute value of surface tension and increase the flow velocity of the weld pool. The increase of penetration in two component activating flux is the result of the combination of the increase of the flow velocity of the weld pool and the change of surface tension temperature gradient.
-
-
表 1 304不锈钢化学成分(质量分数,%)
Table 1 Chemical compositions of 304 stainless steel
C Mn P Si Cr Ni Cu N Mo Fe 0.001 5 1.59 0.028 0.048 18.17 8.01 0.057 9 0.053 1 0.037 4 余量 表 2 试验焊接参数
Table 2 Experimental weld parameters
峰值电流 IP/A 基值电流 Ib/A 占空比 σ (%) 脉冲频率 f1 /Hz 焊接时间 t/s 高速摄像采样频率 f2 /fps 170 60 40 3.5 5 ~ 25 1 000 -
[1] Benedetto F E, Zolotucho H, Prado M O. Critical assessment of the surface tension determined by the maximum pressure bubble method[J]. Materials Research, 2015, 18(1): 9 − 14. doi: 10.1590/1516-1439.232513
[2] Gurevich S M, Zamokov V N, Kushirenko N A. Improving the pene-tration of titanium alloys when they are welded by tungsten arc process[J]. Automatic Welding, 1965, 18(9): 1 − 5.
[3] 董文超, 陆善平, 李殿中, 等. 焊接电弧与活性组元对TIG焊熔池形貌影响的数值模拟[J]. 焊接学报, 2009, 30(11): 49 − 52. doi: 10.3321/j.issn:0253-360X.2009.11.013 Dong Wenchao, Lu Shanping, Li Dianzhong, et al. Numerical simulation of the influence of welding arc and active component on the morphology of TIG welding pool[J]. Transactions of the China Welding Institution, 2009, 30(11): 49 − 52. doi: 10.3321/j.issn:0253-360X.2009.11.013
[4] 马壮, 于秀秀, 时海芳, 等. 粉煤灰A-TIG熔池流动行为及焊缝性能分析[J]. 焊接学报, 2017, 38(9): 65 − 69. Ma Zhuang, Yu Xiuxiu, Shi Haifang, et al. Analysis of flow behaviar and weld performance fly ash A-TIG molten pool[J]. Transactions of the China Welding Institution, 2017, 38(9): 65 − 69.
[5] Hung Yong, Ren Cao, Ren Qinglong. The element transfor behavior ofgas pool coupled activating TIG welding[J]. China Welding, 2018, 27(4): 1 − 9.
[6] Li Chunkai, Shi Yu, Gu Yufen, et al. Effect of oxide on surface tension of molten metal[J]. Rsc Advances, 2017, 7(85): 53941 − 53950. doi: 10.3321/j.issn:0253-360X.2009.02.010
[7] Xiao Y, Den Ouden G. Weld pool oscillation during GTA welding of mild steel[J]. Weld Journal, 1993, 72: 428s − 434s.
[8] Shi Y, Li C K, Du Leim, et al. Frequency characteristics of weld pool oscillation in pulsed gas tungsten arc welding[J]. Journal of Manufacturing Processes, 2016, 24: 145 − 151. doi: 10.1016/j.jmapro.2016.08.010
[9] 石玗, 李春凯, 顾玉芬, 等. 脉冲钨极气体保护焊熔池振荡频率激光视觉测量[J]. 上海交通大学学报, 2016, 50(12): 1910 − 1914. Shi Yu, Li Chunkai, Gu Yufen, et al. Laser vision measurement of oscillation frequency of pulsed tungsten gas shielded welding pool[J]. Journal of Shanghai Jiaotong University, 2016, 50(12): 1910 − 1914.
[10] Traidia A, Roger F. Numerical and experimental study of arc and weld pool behaviour for pulsed current GTA welding[J]. International Journal of Heat & Mass Transfer, 2011, 54(9): 2163 − 2179.
[11] Li Chunkai, Shi Yu, Gu Yufen, et al. Effects of different activating fluxes on the surface tension of molten metal in gas tungsten arc welding[J]. Journal of Manufacturing Processes, 2018, 32: 395 − 402. doi: 10.1016/j.jmapro.2018.03.001
[12] Leconte S, Paillard P, Chapelle P, et al. Effects of flux containing fluorides on TIG welding process[J]. Science & Technology of Welding & Joining, 2013, 12(2): 120 − 126.
[13] Lu Shanping, Fujii H, Sugiyama H, et al. Mechanism and optimization of oxide fluxes for deep penetration in gas tungsten arc welding[J]. Metallurgical & Materials Transactions A, 2003, 34(9): 1901 − 1907.
-
期刊类型引用(3)
1. 饶德林,张瑞尧,S.Paddea,张书彦. 非均匀残余应力的钻孔法测量原理及应用. 中国测试. 2024(S1): 166-170 . 百度学术
2. 苏昊,周蠡,张超. 大口径复合材料顶管接头应力分布模拟仿真. 粘接. 2024(09): 79-82 . 百度学术
3. 潘寿虎,陈国仓,申东滨,倪俊国,秦璐璐. 动态汽车衡型式评价中关于“零点问题”的分析. 计量与测试技术. 2024(11): 74-75+78 . 百度学术
其他类型引用(2)