Principle of stress-free welding with cold source or displacement-controled load
-
摘要: 应用一维杆模型论证了随焊加载冷源或位移控制载荷实现无应力焊接的原理. 应用数值模拟探讨了其实现方式,对7种加载方案下杆件中心点应力、塑性应变等物理量的时程分布进行了数值模拟对比研究,认为任意时刻外加位移控制载荷产生的机械应变和热输入满足一定条件时焊后残余应力为零. 随焊降低残余应力的工艺在焊件局部区域产生的变形速率与该局部区域的热膨胀或收缩变形量速率大小相同时,降低残余应力的效果达到最优. 应用模型导出的原理对焊前预拉伸、焊前温差拉伸、动态温差拉伸、低应力无变形焊接(LSND)等工艺的原理和参数设置依据进行了讨论. 结果表明,使焊件内部在冷却时产生足够大的拉伸塑性应变,是降低焊接残余应力的有效途径.Abstract: The principle of the stress-free welding with cold source or displacement-controled load was demonstrated by using one-dimensional rod model. The numerical simulation experiment was used to discuss the way to realize the welding method. The time history distributions of physical quantities such as stress and plastic strain at the center point of the bar under seven loading schemes were numerically simulated and compared in detail. It was considered that the welding residual stress would be zero when the mechanical strain generated by the external displacement-controled load and thermal input at any time satisfied certain conditions. The best residual stress reducing effect was obtained when the deformation rate produced by the process of reducing residual stress with welding is the same as that of thermal expansion or thermal shrinkage in the local area. Based on the principle derived from this model, the principles and parameter setting basis of process, such as pre-stretching, pre-welding thermal tensioning, dynamic thermal tensioning and low stress and non-deformation (LSND), were discussed. It is an effective way to reduce welding residual stress by generating a large enough tensile plastic strain when the weldment is cooled.
-
-
表 1 材料的热物理性能参数
Table 1 Thermophysical parameters of material
弹性模量E/GPa 泊松比μ 热膨胀系数α(10−5) 密度ρ/(kg·m−3) 导热系数λ/(W·m−1·K−1) 比热c/(J·kg−1·K−1) 对流换热系数H/(W·m−2·K−1) 211 0.3 1.2 7 870 37.8 440 5 -
[1] Zhou G T, Liu X S, Jin C, et al. Welding deformation controlling of aluminium-alloy thin plate by two-direction pre-stress method[J]. Materials Science & Engineering A, 2009, 499(1−2): 147 − 152. doi: 10.1016/j.msea.2007.11.122
[2] 赵耀邦. 双向预置应力控制焊接变形及防止热裂纹研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. [3] Ilman M N, Kusmono, Muslih M R, et al. Mitigating distortion and residual stress by static thermal tensioning to improve fatigue crack growth performance of MIG AA5083 welds[J]. Materials & Design, 2016, 99: 273 − 283. doi: 10.1016/j.matdes.2016.03.049
[4] 宋天民. 焊接残余应力的产生与消除[M]. 北京: 中国石化出版社, 2004. [5] 陈怀宁, 陈亮山, 林泉洪, 等. 逆焊接加热处理防止复板结构应力腐蚀开裂的研究[J]. 焊接学报, 1999, 20(S1): 22 − 26. Chen Huaining, Chen Liangshan, Lin Quanhong, et al. Study on preventing stress corrosion cracking of composite plate structure by anti-welding heating treatment[J]. Transactions of the China Welding Institution, 1999, 20(S1): 22 − 26.
[6] Liu X S, Wang P, Zhou G T, et al. Controlling of stress and distortion in thin copper plate by welding with trailing peening[J]. Rare Metals, 2007, 26: 216 − 219.
[7] 徐文立, 黎明, 刘雪松, 等. 动态低应力小变形无热裂随焊锤击焊接技术研究[J]. 材料科学与工艺, 2001, 9(1): 6 − 10. doi: 10.3969/j.issn.1005-0299.2001.01.002 Xu Wenli, Li Ming, Liu Xuesong, et al. Research on dynamic low stress, small deformation and non-thermal cracking welding with hammering[J]. Material Science and Technology, 2001, 9(1): 6 − 10. doi: 10.3969/j.issn.1005-0299.2001.01.002
[8] 关桥, 郭德伦, 李从卿. 低应力无变形焊接新技术——薄板构件的LSND焊接法[J]. 焊接学报, 1990, 11(4): 42 − 48. Guan Qiao, Guo Delun, Li Congqing. New technology of low stress and non-deformation welding - LSND welding method for thin plate[J]. Transactions of the China Welding Institution, 1990, 11(4): 42 − 48.
[9] 李军. 随焊旋转挤压控制铝合金薄板焊接应力变形及防热裂研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. [10] 王者昌. 关于焊接残余应力消除原理的探讨[J]. 焊接学报, 2000, 21(2): 55 − 58. doi: 10.3321/j.issn:0253-360X.2000.02.015 Wang Zhechang. Discussion on the principle of eliminating residual stress in welding[J]. Transactions of the China Welding Institution, 2000, 21(2): 55 − 58. doi: 10.3321/j.issn:0253-360X.2000.02.015
[11] Zhang W, Fu H, Fan J K, et al. Influence of multi-beam preheating temperature and stress on the buckling distortion in electron beam welding[J]. Materials & Design, 2018, 139: 439 − 446. doi: 10.1016/j.matdes.2017.11.016
[12] 郭绍庆, 袁鸿, 徐文立, 等. 温差拉伸和随焊激冷配合使用控制焊接变形[J]. 焊接学报, 2004, 25(6): 82 − 86. doi: 10.3321/j.issn:0253-360X.2004.06.022 Guo Shaoqing, Yuan Hong, Xu Wenli, et al. Tand quenching with welding with combination of thermal tensioning and quick colding to control welding deformation[J]. Transactions of the China Welding Institution, 2004, 25(6): 82 − 86. doi: 10.3321/j.issn:0253-360X.2004.06.022
[13] Burak Y I, Besedina L P, Romanchuk Y P, et al. Controlling the longitudinal plastic shrinkage of metal during welding[J]. Avt. Svarka (Automated Weld.), 1977, 3: 27 − 29.
[14] Michaleris P, Dantzig J, Tortorelli D. Tortorelli. Minimization of welding residual stress and distortion in large structure[J]. Welding Journal, 1999, 78(1): 361 − 365.
[15] Pazooki AMA, Hermans MJM, Richardson IM. Finite element simulation and experimental investigation of thermal tensioning during welding of DP600 steel[J]. Science and Technology of Welding and Joining, 2017, 22(1): 1 − 15. doi: 10.1080/13621718.2016.1169363
[16] Li M S, Ji S D, Yan D J, et al. Controlling welding residual stress and distortion by a hybrid technology of transient thermal tensioning and trailing intensive cooling[J]. Science and Technology of Welding and Joining, 2019, 24(6): 527 − 537. doi: 10.1080/13621718.2018.1564473
[17] 杨建国, 谢浩, 闫德俊, 等. 随焊干冰激冷冷源尺寸对焊接残余应力影响的有限元分析[J]. 焊接学报, 2017, 38(2):14−18. Yang Jianguo, Xie Hao, Yan Dejun, et al. Finite element analysis of the influence of cooling source size on welding residual stress [J]. Transactions of the China Welding Institution, 2017, 38 (2): 14−18.
-
期刊类型引用(4)
1. 高宝祺,赵衍华,张丽娜,邵震,管卫,黄一鸣,崔雷. 2219铝合金拉拔式摩擦塞补焊成形行为及其对界面结合质量的影响. 焊接学报. 2025(02): 7-17+71 . 本站查看
2. 张忠科,初树晟. H62黄铜摩擦塞补焊接头微观组织及力学性能. 材料科学与工艺. 2024(06): 41-49 . 百度学术
3. 马领航,李波,赵彦广,宋建岭,高世康,李雨,许子彦,周利. 火箭贮箱焊接缺陷修复技术研究现状. 电焊机. 2023(03): 31-45 . 百度学术
4. 张亮亮,刘致远,剡晓旭. 6082铝合金FSW匙孔修复过程中温度场数值模拟. 甘肃高师学报. 2023(05): 1-5 . 百度学术
其他类型引用(1)