Effect of Si content in welding wire on crack sensitivity of aluminum alloy joints and its mechanism
-
摘要: 使用扫描电镜、能谱、温度场实时采集等测试方法,研究了焊丝中Si含量对AA6063铝合金GMAW焊接头热裂纹敏感性的影响规律及机理. 结果表明,当焊丝为纯铝时,鱼骨试样的焊缝中心会出现细长的焊接裂纹;当焊丝中的Si含量为4.5% ~ 6%时,裂纹的长度变短,但是开裂距离明显增加;当焊丝中的Si含量达到11% ~ 13%时,试样焊缝无裂纹出现. 随着Si含量的不断提高,合金易出现裂纹的凝固温度区间先增大后减小;焊丝中Si含量的不同还会影响凝固后期金属液的流动性,使得焊缝晶界处的物相成分和形态都有明显的区别;同时,Si含量的提高会使得接头的冷却速度先增加后减小,从而导致应力状态改变,热裂纹敏感性先升高后降低.Abstract: Using scanning electron microscopy, energy spectrum, and real-time acquisition of temperature fields, the effects and mechanisms of Si content in the welding wire on the sensitivity to thermal cracking of AA6063 aluminum alloy GMAW welded joints were studied. The results show that when the welding wire is pure aluminum, slender welding cracks appear in the center of the weld of the fishbone sample; when the Si content in the welding wire is 4.5% ~ 6%, the length of the crack is short, but the cracking distance is obviously increased; when the Si content in the welding wire reached 11% ~ 13%, no cracks appeared in the sample weld. With the continuous increase of Si content, the solidification temperature range of alloy prone to crack increases first and then decreases. The difference of Si content in welding wire will also affect the fluidity of molten metal at the later solidification stage, making the phase composition and morphology at the grain boundary of weld obviously different. At the same time, the increase of Si content will make the cooling rate of the joint increase first and then decrease, thus causing the stress state to change, and the thermal crack sensitivity increases first and then decreases.
-
Keywords:
- Si content /
- aluminum alloy /
- GMAW welding /
- crack sensitivity
-
-
表 1 6063铝合金与ER1100,ER4043,ER4047焊丝的化学成分 (质量分数,%)
Table 1 Chemical compositions of 6063 aluminum alloy and ER1100, ER4043, ER4047 welding wire
材料 Zn Mg Mn Fe Si Ti Cu Al 6063 0.1 0.45 ~ 0.9 0.1 0.35 0.2 ~ 0.6 0.06 0.06 余量 ER1100 0.1 — 0.05 0.06 0.06 0.6 4.5 ~ 6.0 余量 ER4043 0.1 0.05 0.15 0.6 4.5 ~ 6.0 0.8 11.0 ~ 13.0 余量 ER4047 0.2 0.1 0.15 0.8 11.0 ~ 13.0 0.06 0.06 余量 表 2 焊接工艺参数
Table 2 Welding process parameters
焊枪角度α/(°) 保护气体 保护气体流量Q/(mL·s−1) 焊接速度v/(mm·min−1) 焊接电流I/A 电弧电压U/V 90 Ar 15 700 152 21 表 3 晶粒基体与晶间各元素原子分数(%)
Table 3 Grain matrix and intergranular content
能谱点 Al Si 能谱1 98.74 1.26 能谱2 59.40 40.60 -
[1] Friedrich H E, Beeh E, Roider C. Solutions for next generation automotive lightweight concepts based on material selection and functional integration[C]// TMS World Conference, Cham: Springer, 2018.
[2] 孙冠男. 汽车轻量化技术[J]. 汽车工程师, 2017(7): 14 − 15. doi: 10.3969/j.issn.1674-6546.2017.07.004 Sun Guannan. Automotive lightweight technology[J]. Automotive Engineer, 2017(7): 14 − 15. doi: 10.3969/j.issn.1674-6546.2017.07.004
[3] Sun J. Research on situation and application prospect of automotive body sheets Al-Mg-Si based (6000 series) alloy[J]. IOP Conference Series Materials Science and Engineering, 2018, 452(2): 022082.
[4] Wang G, Zhao Y, Hao Y. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing[J]. Journal of Materials Science & Technology, 2018(1): 73 − 91.
[5] Chang Yunfeng, Lei Zhen, Wang Xuyou, et al. Characteristic of laser-MIG hybrid welding with filling additional cold wire for aluminum alloy[J]. China Welding, 2018, 27(3): 39 − 45.
[6] 冯时. 6082铝合金激光填丝焊焊接特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [7] 阮野, 苏金龙, 乔建毅, 等. 湿度对铝合金接头裂纹敏感性的影响规律及机理[J]. 焊接学报, 2019, 40(1): 95 − 99. Ruan Ye, Su Jinlong, Qiao Jianyi, et al. Effect and mechanism of humidity on crack sensitivity of aluminum alloy joints[J]. Transactions of the China Welding Institution, 2019, 40(1): 95 − 99.
[8] Ghaini F M, Sheikhi M, Torkamany M J, et al. The relation between liquation and solidification cracks in pulsed laser welding of 2024 aluminium alloy[J]. Materials Science and Engineering: A, 2009, 519(1-2): 167 − 171. doi: 10.1016/j.msea.2009.04.056
[9] 黄九龄, 孔谅, 王敏, 等. 纯钛TA2薄板双钨极氩弧焊焊接工艺[J]. 焊接学报, 2019, 40(9): 14 − 18. Huang Jiuling, Kong Liang, Wang Min, et al. Double tungsten arc welding process for pure titanium TA2 sheet[J]. Transactions of the China Welding Institution, 2019, 40(9): 14 − 18.
[10] Chen Y, Lei Z K, Bai R X, et al. Study on elastoplastic crack propagation behavior of laser-welded 6061 aluminum alloy using digital image correlation method[J]. IOP Conference Series Materials Science and Engineering, 2017, 281(1): 012040.
[11] Coniglio N, Cross C E. Mechanisms for solidification crack initiation and growth in aluminumwelding[J]. Metallurgical and Materials Transactions A, 2009, 40(11): 2718 − 2728. doi: 10.1007/s11661-009-9964-4
[12] 王小杰. Al-Mg-Si合金激光焊接凝固裂纹形成机理研究[D]. 上海: 上海交通大学, 2015. [13] 农琪, 谢业东, 金长义, 等. Al-Mg-Si铝合金氩弧焊结晶裂纹形成机理的研究[J]. 热加工工艺, 2013, 42(1): 205 − 207. Nong Qi, Xie Yedong, Jin Changyi, et al. Study on the mechanism of crystalline crack formation in argon arc welding of Al-Mg-Si aluminum alloy[J]. Thermal Engineering, 2013, 42(1): 205 − 207.
[14] 齐振余. Al-12.7Si-0.7Mg合金MIG焊接工艺和焊后热处理对接头组织与性能的影响[D]. 沈阳: 东北大学, 2012. [15] 汪认. A6N01S-T5铝合金焊接热裂纹性能评价优化研究[D]. 成都: 西南交通大学, 2017. [16] Campbell J. Castings[M]. Butterworth-Heinemann, 2003.
[17] Katgerman L, Eskin D G. In search of the prediction of hot cracking in aluminium alloys[M]. Springer: Hot Cracking Phenomena in Welds Ⅱ, 2008.
[18] 杨伏良, 甘卫平, 陈招科. 硅含量对高硅铝合金材料组织及性能的影响[J]. 材料导报, 2005, 19(2): 98 − 100. doi: 10.3321/j.issn:1005-023X.2005.02.029 Yang Fuliang, Gan Weiping, Chen Zhaoke. Effect of silicon content on microstructure and properties of high silicon aluminum alloy[J]. Materials Guide, 2005, 19(2): 98 − 100. doi: 10.3321/j.issn:1005-023X.2005.02.029
[19] 张建新, 高爱华. Si含量对6063铝合金组织性能的影响[J]. 材料热处理学报, 2008(5): 74 − 77. Zhang Jianxin, Gao Aihua. Effect of Si content on the structure and properties of 6063 aluminum alloy[J]. Journal of Material Heat Treatment, 2008(5): 74 − 77.
[20] 陈定贤. 高导热铝合金设计中亚共晶Al-Si合金与共晶Al-Si合金的分析研究[J]. 资源再生, 2019(1): 55 − 57. doi: 10.3969/j.issn.1673-7776.2019.01.024 Chen Dingxian. Analysis and research of hypoeutectic Al Si alloy and eutectic Al Si alloy in the design of high thermal conductivity aluminum alloy[J]. Resource Regeneration, 2019(1): 55 − 57. doi: 10.3969/j.issn.1673-7776.2019.01.024
[21] 杨迎新, 张乐平, 钟建华. 提高6063铝合金导热性能的途径探讨[J]. 金属功能材料, 2004(3): 23 − 25. doi: 10.3969/j.issn.1005-8192.2004.03.007 Yang Yingxin, Zhang Leping, Zhong Jianhua. Approach to improving the thermal conductivity of 6063 aluminum alloy[J]. Metal Functional Materials, 2004(3): 23 − 25. doi: 10.3969/j.issn.1005-8192.2004.03.007