高级检索

电弧功率对MIG电弧增材制造316L奥氏体不锈钢组织及力学性能的影响

陈晓晖, 张述泉, 冉先喆, 黄正

陈晓晖, 张述泉, 冉先喆, 黄正. 电弧功率对MIG电弧增材制造316L奥氏体不锈钢组织及力学性能的影响[J]. 焊接学报, 2020, 41(5): 42-49. DOI: 10.12073/j.hjxb.20190818001
引用本文: 陈晓晖, 张述泉, 冉先喆, 黄正. 电弧功率对MIG电弧增材制造316L奥氏体不锈钢组织及力学性能的影响[J]. 焊接学报, 2020, 41(5): 42-49. DOI: 10.12073/j.hjxb.20190818001
CHEN Xiaohui, ZHANG Shuquan, RAN Xianzhe, HUANG Zheng. Effect of arc power on microstructure and mechanical properties of austenitic stainless steel 316L fabricated by high efficient arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 42-49. DOI: 10.12073/j.hjxb.20190818001
Citation: CHEN Xiaohui, ZHANG Shuquan, RAN Xianzhe, HUANG Zheng. Effect of arc power on microstructure and mechanical properties of austenitic stainless steel 316L fabricated by high efficient arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 42-49. DOI: 10.12073/j.hjxb.20190818001

电弧功率对MIG电弧增材制造316L奥氏体不锈钢组织及力学性能的影响

基金项目: 国家重点研发计划(2018YFB1105800);国家自然科学青年基金项目(51901010);中国铁路总公司重大课题资助(2017G003-C).
详细信息
    作者简介:

    陈晓晖,1985年出生,博士;主要从事金属增材制造方面工作;发表论文5篇;Email:chenxiaohui0310@126.com

    通讯作者:

    张述泉,博士;Email:zhangsq@buaa.edu.cn.

  • 中图分类号: TG 444

Effect of arc power on microstructure and mechanical properties of austenitic stainless steel 316L fabricated by high efficient arc additive manufacturing

  • 摘要: 采用大功率MIG电弧热源熔化沉积316L奥氏体不锈钢金属焊丝制备试样,研究电弧功率对成形试样组织、力学性能以及断裂行为的影响并分析其机理,为高效、低成本电弧增材制造大型金属构件提供技术基础和理论依据. 结果表明,大功率MIG电弧增材制造316L奥氏体不锈钢内部形成柱状晶并生成δ相和σ相呈蠕虫状分布在γ基体中. δ相分布在晶内和晶界起强化作用. 随着电弧功率从3 763 W增加8 400 W,316L试样晶粒尺寸变大,δ相含量减少而σ相含量增加,使得材料抗拉强度从578 MPa降低到533 MPa,屈服强度从310 MPa降低到235 MPa,断后伸长率从53%降低到44%,断面收缩率从67%下降到60%. 当电弧功率增加到8 400 W时,在晶界上形成较多的σ相,试样断裂模式由较低功率时的穿晶韧窝断裂转变为沿晶韧窝断裂.
    Abstract: The austenitic stainless steel 316L was fabricated by high power MIG arc additive manufacturing and its microstructure evolution, mechanical properties and fracture behavior were investigated. Results show that there are columnar grains forming in the MIG arc additive manufacturing 316L. The microstructure consists of vermicular δ and σ phases within γ matrix. The δ distributed both at grain boundaries and in the grains can strengthen the steel. With the arc power increasing from 3 763 W to 8 400 W, δ phases decrease and σ phases increase, as well as grain size increases. That leads to the ultimate tensile strength decrease from 578 MPa to 533 MPa, yield strength decrease from 310 MPa to 235 MPa, elongation decrease from 53% to 44%, reduction of area decrease from 67% to 60%. A pronounced feature is that the fracture type transfers from trans-granular dimple fracture to inter-granular dimpled fracture at the arc power of 8 400 W.
  • 图  1   MIG电弧增材制造过程示意图

    Figure  1.   Schematic illustration of MIG additive manufacturing

    图  2   MIG电弧增材制造316L奥氏体不锈钢晶粒形貌

    Figure  2.   Grain morphologies of MIG additive manufacturing 316L.(a) P = 3 763 W; (b) P = 5 781 W; (c) P = 8 400 W

    图  3   MIG电弧增材制造316L奥氏体不锈钢显微组织

    Figure  3.   Microstructures of MIG additive manufacturing 316L. (a) P = 3 763 (low); (b) P = 3 783 (high); (c) P = 5 781 (low); (d) P = 5 781 (high); (e) P = 8 400 (low); (f) P = 8 400 (high)

    图  4   MIG电弧增材制造316L奥氏体不锈钢热影响区显微组织(P = 8 400 W)

    Figure  4.   Microstructures of HAZ in MIG additive manufacturing 316L. (a) low magnification photograph; (b) high magnification photograph

    图  5   MIG电弧增材制造316L奥氏体不锈钢显微硬度

    Figure  5.   Microhardness of MIG additive manufacturing 316L

    图  6   MIG电弧增材制造316L断口形貌

    Figure  6.   Fracture of MIG additive manufacturing 316L. (a) L-direction fracture photograph of P = 3 763 W; (b) T-direction fracture photograph of P = 3 763 W; (c) L-direction fracture photograph of P = 5 781 W; (d) T-direction fracture photograph of P = 5 781 W; (e) L-direction fracture photograph of P = 8 400 W; (f) T-direction fracture photograph of P = 8 400 W

    图  7   MIG电弧增材制造316L韧窝形貌

    Figure  7.   Dimpled morphology of fracture of MIG additive manufacturing 316L. (a) L-direction fracture photograph of P = 3 763 W; (b) T-direction fracture photograph of P = 3 763 W; (c) L-direction fracture photograph of P = 5 781 W;(d) T-direction fracture photograph of P = 5 781 W; (e) L-direction fracture photograph of P = 8 400 W; (f) T-direction fracture photograph of P = 8 400 W

    图  8   MIG电弧增材制造316L(P = 8 400 W)断口形貌与显微组织

    Figure  8.   Fracture and microstructure of MIG additive manufacturing 316L. (a) low magnification photograph of fracture; (b) low magnification photograph of microstructure; (c) high magnification photograph of fracture; (d) high magnification photograph of microstructure

    图  9   MIG电弧增材制造316L(P = 8 400 W)断口截面

    Figure  9.   Fracture section of MIG additive manufacturing 316L

    图  10   MIG电弧增材制造316L(P = 8 400 W)沿晶韧窝型断裂示意图

    Figure  10.   Schematic illustration of intergranular dimpled fractureracture in MIG additive manufacturing 316L.(a) original marphology; (b) crack initiation; (c) crack growth; (d) fracture

    表  1   MIG电弧增材制造参数

    Table  1   Process parameters of MIG additive manufacturing

    试样电流I/A电压U /V电弧功率P /W扫描速度v /(mm·min−1)沉积率r/(kg·h−1)
    1 175 22 3 763 480 3.2
    2 235 24.6 5 781 480 4.3
    3 300 28 8 400 600 5.3
    下载: 导出CSV

    表  2   MIG电弧增材制造316L奥氏体不锈钢化学成分(质量分数,%)

    Table  2   Chemical compositions of MIG additive manufacturing 316L

    CCrNiMoSiMnPCuFe
    0.01418.7411.822.670.561.550.030.17余量
    下载: 导出CSV

    表  3   MIG电弧增材制造316L奥氏体不锈钢试样晶粒大小和相含量

    Table  3   Grain widths and volume fractions of δ and σ phase of MIG additive manufacturing 316L

    试样平均晶粒宽度 d /µmδ相含量 (%)σ相含量 (%)
    P = 3 763 W 241 12.2 1.0
    P = 5 781 W 451 10.6 1.4
    P = 8 400 W 722 7.8 4.5
    下载: 导出CSV

    表  4   MIG电弧增材制造316L奥氏体不锈钢沉积层和热影响区平均显微硬度

    Table  4   Average microhardness of HAZ and deposited layer of MIG additive manufacturing 316L

    试样沉积层硬度值H(HV)热影响区硬度值H(HV)
    P = 3 763 W 244 217
    P = 5 781 W 215 202
    P = 8 400 W 202 191
    下载: 导出CSV

    表  5   MIG电弧增材制造316L奥氏体不锈钢室温拉伸性能

    Table  5   Room temperature tensile properties of MIG additive manufacturing 316L

    试样方向抗拉强度Rm/MPa屈服强度ReL/MPa断后伸长率A(%)断面收缩率Z(%)
    P = 3 763 W L 567 ± 10 288 ± 3 53 ± 2 67 ± 4
    T 579 ± 3 310 ± 6 50 ± 2 63 ± 9
    L-T/L −2% −8% 6% 6%
    P = 5 781 W L 555 ± 5 261 ± 0 50 ± 3 66 ± 5
    T 561 ± 6 280 ± 8 48 ± 6 63 ± 6
    L-T/L −6% −7% 4% 5%
    P = 8 400 W L 533 ± 23 235 ± 6 48 ± 2 64 ± 5
    T 540 ± 8 258 ± 2 44 ± 10 60 ± 7
    L-T/L −1% −10% 8% 6%
    锻造[15] 505 ~ 578 222 ~ 265 56 ~ 63 76 ~ 81
    标准[15] ≥450 170 40 50
    下载: 导出CSV
  • [1]

    Marshall P. Austenitic stainless steels: microstructure and mechanical properties[M]. Amsterdam: Elsevier, 1984.

    [2]

    Wang H, Zhang S, Wang X. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese J Lasers, 2009, 36(12): 3204 − 3209. doi: 10.3788/CJL20093612.3204

    [3] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1 − 4. doi: 10.3969/j.issn.1671-5276.2013.04.001

    Lu Bingheng, Li Dichen. Development of the additive manufacturing (3D pringting) technology[J]. Machine Building & Automation, 2013, 42(4): 1 − 4. doi: 10.3969/j.issn.1671-5276.2013.04.001

    [4]

    Frazier W. Metal additive manufacturing: a review[J]. Journal of Materials Engineering & Performance, 2014, 23(6): 1917 − 1928.

    [5] 张海鸥, 王超, 胡帮友, 等. 金属零件直接快速制造技术及发展趋势[J]. 航空制造技术, 2010, 8: 43 − 46. doi: 10.3969/j.issn.1671-833X.2010.12.005

    Zhang Haiou, Wang Chao, Hu Bangyou. Direct rapid manufacturing technology for metal oarts and its development trends[J]. Aeronautical Manufacturing Technology, 2010, 8: 43 − 46. doi: 10.3969/j.issn.1671-833X.2010.12.005

    [6] 熊江涛, 耿海滨, 林鑫, 等. 电弧增材制造研究现状及在航空制造中应用前景[J]. 航空制造技术, 2015, 493(23-24): 80 − 85.

    Xiong Jintao, Geng Haibin, Lin Xin,et al. Research status of wire and additire manufacture and its application in aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2015, 493(23-24): 80 − 85.

    [7] 李超, 朱胜, 沈灿铎, 等. 焊接快速成形技术的研究现状与发展趋势[J]. 中国表面工程, 2009, 22(3): 7 − 12. doi: 10.3969/j.issn.1007-9289.2009.03.002

    Li Chao, Zhu Sheng, Shen Canduo, et al. Present state and development trend of welding rapid forming technology[J]. China Surface Engineering, 2009, 22(3): 7 − 12. doi: 10.3969/j.issn.1007-9289.2009.03.002

    [8] 苗玉刚, 李春旺, 张鹏. 不锈钢旁路热丝等离子弧增材制造接头特性分析[J]. 焊接学报, 2018, 39(6): 35 − 38.

    Miao Yugang, Li Chunwang, Zhang Peng. Joint characteristics of stainless steel by pass-current wire-heating PAW on additive manufacturing[J]. Transactions of the China Welding Institution, 2018, 39(6): 35 − 38.

    [9] 李雷, 于治水, 张培磊. TC4钛合金电弧增材制造叠层组织特征[J]. 焊接学报, 2018, 39(12): 37 − 43. doi: 10.12073/j.hjxb.2018390294

    Li Lei, Yu Zhishui, Zhang Peilei. Microstructure characteristics of wire and arc additive manufacturing of TC4 components[J]. Transactions of the China Welding Institution, 2018, 39(12): 37 − 43. doi: 10.12073/j.hjxb.2018390294

    [10]

    Skiba T, Baufeld B, Biest O V D. Microstructure and mechanical properties of stainless steel component manufactured by shaped metal deposition[J]. ISIJ international, 2009, 49(10): 1588 − 1591. doi: 10.2355/isijinternational.49.1588

    [11]

    Kevin H, Peter M. 3DPMD-Arc-based additive manufacturing with titanium powder as raw material[J]. China Welding, 2019, 28(1): 15 − 19.

    [12]

    Xiong J, Zhang G. Adaptive control of deposited height in GMAW-based layer additive manufacturing[J]. Journal of Materials Processing Technology, 2014, 214(4): 962 − 968. doi: 10.1016/j.jmatprotec.2013.11.014

    [13] 尹紫秋, 熊俊. 基于ACT匹配的GMA增材制造熔池形貌三维重建[J]. 焊接学报, 2019, 40(1): 49 − 52. doi: 10.12073/j.hjxb.2019400010

    Yin Ziqiu, Xiong Jun. Three-dimensional reconstruction of molten pool appearance in GMA additive manufacturing based on ACT stereo matching algorithm[J]. Transactions of the China Welding Institution, 2019, 40(1): 49 − 52. doi: 10.12073/j.hjxb.2019400010

    [14]

    Katayama S, Fujimoto T, Matsunawa A. Correlation among solidification process, microstructure, microsegregation and solidification cracking susceptibility in stainless steel weld metals (Materials, Metallurgy & Weldability)[J]. Transactions of Jwri, 1985, 14: 123 − 38.

    [15] 干勇, 田志凌, 董翰, 等. 中国材料工程大典. 第3卷, 钢铁材料工程[M]. 北京: 化学工业出版社, 2006.
图(10)  /  表(5)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  16
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-17
  • 网络出版日期:  2020-09-26
  • 刊出日期:  2020-09-26

目录

    /

    返回文章
    返回