高级检索

AZ31B镁合金超声强化TLP接头组织演变及缺陷分析

马琳, 温琦, 李鸣申, 周长壮, 崔庆贺

马琳, 温琦, 李鸣申, 周长壮, 崔庆贺. AZ31B镁合金超声强化TLP接头组织演变及缺陷分析[J]. 焊接学报, 2020, 41(6): 30-36. DOI: 10.12073/j.hjxb.20190817001
引用本文: 马琳, 温琦, 李鸣申, 周长壮, 崔庆贺. AZ31B镁合金超声强化TLP接头组织演变及缺陷分析[J]. 焊接学报, 2020, 41(6): 30-36. DOI: 10.12073/j.hjxb.20190817001
MA Lin, WEN Qi, LI Mingshen, ZHOU Changzhuang, CUI Qinghe. Microstructure evolution and defect analysis of ultrasonic-assisted transient liquid phase bonding of AZ31B Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 30-36. DOI: 10.12073/j.hjxb.20190817001
Citation: MA Lin, WEN Qi, LI Mingshen, ZHOU Changzhuang, CUI Qinghe. Microstructure evolution and defect analysis of ultrasonic-assisted transient liquid phase bonding of AZ31B Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 30-36. DOI: 10.12073/j.hjxb.20190817001

AZ31B镁合金超声强化TLP接头组织演变及缺陷分析

基金项目: 国家自然科学基金青年基金项目(51705338);航空科学基金项目(2016ZE54024);辽宁省教育厅科学技术研究项目(L201731);辽宁省自然基金面上项目(20180550471).
详细信息
    作者简介:

    马琳,1984年出生,博士,副教授;主要从事超声复合先进连接技术研究; 发表论文20余篇;Email:lynn128@126.com.

  • 中图分类号: TG 456.9

Microstructure evolution and defect analysis of ultrasonic-assisted transient liquid phase bonding of AZ31B Mg alloy

  • 摘要: 超声强化瞬间液相扩散焊(U-TLP)可在大气环境下实现难润湿材料的快速连接,是一种高质量、高效率、低成本的先进连接方法. 文中以AZ31B 镁合金为基材,纯Zn为中间层,分析超声作用下结合区组织演变规律,探究AZ31B镁合金U-TLP接头缺陷形成机理. 结果表明,随着超声时间的延长,结合区组织由细小的Mg-Zn共晶相及MgZn,Mg7Zn3相组成的共晶花纹组织逐渐向扩散完全的α-Mg 固溶体转变,接头压剪强度随之提高. 但随超声时间的延长,结合区产生孔洞缺陷的几率增加,当超声时间增加至60 s时,孔洞缺陷占焊缝总长度的46.4%,接头压剪强度为55 MPa,为母材压剪强度的64.7%. 采用在冷却过程中二次超声强化工艺可有效提高原子扩散程度,接头压剪强度同比提高17%.
    Abstract: Ultrasound-promoted transient liquid phase bonding (U-TLP) can achieve fast connection of difficult-to-wet materials in the atmosphere. It is a high-quality, high-efficiency, low-cost advanced connection method. This paper uses AZ31B magnesium alloy as the substrate. Pure zinc is the middle layer, and the evolution law of the microstructure of the bonding zone under ultrasonic irradiation is analyzed. The formation mechanism of Mg/Zn/Mg U-TLP interface defects is investigated. The results show that the microstructure of the bonded zone is composed of fine Mg-Zn eutectic with the extension of ultrasonic time. The liquid phase structure consisting of alternating MgZn and Mg7Zn3 phases gradually transforms to the fully diffused α-Mg phase, and the joint shear strength increases. However, when the ultrasonic time is increased to 60s, due to the loss of the liquid phase, pore defects appeared along welding seam. The joint shear strength is 55 MPa, which is 64.7% of the base material compressive shear strength. Using the secondary ultrasonic optimization process during the cooling process, the joint shear strength increased by 17%.
  • 图  1   U-TLP过程原理图

    Figure  1.   Schematic diagram of U-TLP bonding process

    图  2   压剪强度试验过程示意图

    Figure  2.   Schematic diagram of shear strength test

    图  3   TLP试件外观形貌

    Figure  3.   Appearance of TLP species. (a) 5 s; (b) 20 s; (c) 30 s; (d) 60 s

    图  4   TLP截面宏观形貌

    Figure  4.   Cross section morphology of TLP joints. (a) 5 s; (b) 20 s; (c) 30 s; (d) 60 s

    图  5   焊缝中各区域缺陷长度及占比

    Figure  5.   Length and proportion in weld seam of liquid phase bonding, diffusion bonding zone and defect

    图  6   试件不同区域界面结合形貌

    Figure  6.   Interface morphology of different parts of joints. (a) region A; (b) region B; (c) region C; (d) region D

    图  7   不同超声时间下典型区显微组织形貌及成分分布

    Figure  7.   Microstructure and element distribution of the joint with different ultrasonic time. (a) 5 s; (b) 30 s; (c) 60 s

    图  8   不同超声施加时间下接头压剪强度

    Figure  8.   Shear strength of joints with different ultrasonic time

    图  9   不同超声施加时间下断口微观组织形貌

    Figure  9.   Microstructure of fractures with different ultrasonic times. (a) 5 s; (b) 20 s; (c) 30 s; (d) 60 s

    图  10   二次超声接头组织与元素分布

    Figure  10.   Morphology and elements distribution of joint with secondary ultrasonic treatment. (a) cross section morphology; (b) microstrueture and element distribution of region E

    表  1   AZ31B镁合金主要成分 (质量分数,%)

    Table  1   Chemical composition of AZ31B Mg alloy

    SiFeCuMnAlZnMg
    0.0210.002 70.002 70.343.070.86余量
    下载: 导出CSV
  • [1] 丁文江, 吴玉娟, 彭立明, 等. 高性能镁合金研究及应用的新进展[J]. 中国材料进展, 2010, 29(8): 37 − 45.

    Ding Wenjiang, Wu Yujuan, Peng Liming, et al. Research and application development of advanced magnesium alloys[J]. Materials China, 2010, 29(8): 37 − 45.

    [2] 苗玉刚, 韩端锋, 姚竞争, 等. 镁/钢异种合金激光深熔钎焊工艺特性[J]. 焊接学报, 2011, 32(1): 45 − 48.

    Miao Yugang, Han Duanfeng, Yao Jingzheng, et al. Welding characteristics of laser penetration welding-brazed Mg/steel dissimilar alloys[J]. Transactions of the China Welding Institution, 2011, 32(1): 45 − 48.

    [3] 张冠星, 钟素娟, 孙华为, 等. Mg-Al-Sn钎料及其AZ61A镁合金钎焊接头组织性能分析[J]. 焊接学报, 2018, 39(1): 41 − 44. doi: 10.12073/j.hjxb.2018390010

    Zhang Guanxing, Zhong Sujuan, Sun Huawei, et al. Microstructure and properties of Mg-Al-Sn filling metal and solder joint of AZ61A magnesium alloy[J]. Transactions of the China Welding Institution, 2018, 39(1): 41 − 44. doi: 10.12073/j.hjxb.2018390010

    [4]

    Tan Ming, Quan Gaofeng, Liu Zhaoming. Extrusion process and property of AZ31 magnesium alloy[J]. China Welding, 2019, 28(2): 10 − 14.

    [5] 李丰, 党鹏飞, 刘雪松. 基于不旋转轴肩的铝镁异种材料搅拌摩擦焊[J]. 焊接学报, 2018, 39(5): 55 − 58.

    Li Feng, Dang Pengfei, Liu Xuesong. Dissimilar friction stir welding of Al/Mg alloys based on non-rotational shoulder[J]. Transactions of the China Welding Institution, 2018, 39(5): 55 − 58.

    [6]

    Xie R, Chen X, Lai Z, et al. Microstructure, mechani-cal properties and mechanism of ultrasound-assisted rapid transient liquid phase bonding of magnesium alloy in air[J]. Materials & Design, 2016, 91(2): 19 − 27.

    [7]

    Lai Z, Chen X G, Pan C, et al. Joining Mg alloys with Zn interlayer by novel ultrasonic-assisted transient liquid phase bonding method in air[J]. Materials Letters, 2016, 166: 219 − 222. doi: 10.1016/j.matlet.2015.11.031

    [8]

    Lai Z, Xie R S, Pan C, et al. Ultrasound-assisted transient liquid phase bonding of magnesium alloy using brass interlayer in Air[J]. Journal of Materials Science & Technology, 2016, 33(6): 567 − 572.

    [9] 张贵锋, 张建勋, 包亚峰. 日本关于固相扩散焊界面空洞收缩机理的研究[J]. 焊接, 2001(10): 14 − 18. doi: 10.3969/j.issn.1001-1382.2001.10.004

    Zhang Guifeng, Zhang Jianxun, Bao Yafeng. Studies on void shrinkage mechanism in solid state diffusion bonding interface in Janpan[J]. Welding & Joining, 2001(10): 14 − 18. doi: 10.3969/j.issn.1001-1382.2001.10.004

    [10]

    Yan J C, Xu H B, Xu Z W, et al. Modelling behaviour of oxide film during vibration diffusion bonding of SiCp/A356 composite in air[J]. Materials Science and Technology, 2004, 20: 1489 − 1492. doi: 10.1179/026708304X3926

    [11]

    Xu Z, Yan J, Zhang B, et al. Behaviors of oxide film at the ultrasonic aided interaction interface of Zn–Al alloy and Al2O3p /6061Al composites in air[J]. Materials Science & Engineering A, 2006, 415(1): 80 − 86.

    [12]

    Wang Q, Chen X, Zhu L, et al. Rapid ultrasound-induced transient-liquid-phase bonding of Al-50Si alloys with Zn interlayer in air for electrical packaging application[J]. Ultrasonics Sonochemistry, 2017, 34: 947 − 952. doi: 10.1016/j.ultsonch.2016.08.004

    [13]

    Huang J X, Wang J Q, Yang Z G, et al. Ultrasonic effect mechanism on transient liquid phase bonding joints of SiCp, reinforced Mg metal matrix composites using Zn-Al-Zn multi-interlayer[J]. Ultrasonics Sonochemistry, 2018, 43: 101 − 109. doi: 10.1016/j.ultsonch.2017.11.022

    [14]

    Padhy G K, Wu C S, Gao S. Subgrain formation in ultrasonic enhanced friction stir welding of aluminium alloy[J]. Materials Letters, 2016, 183: 34 − 39. doi: 10.1016/j.matlet.2016.07.033

    [15] 马琳. 液态钎料超声驱动填缝机理及声空化作用研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
    [16] 刘浩, 柯孚久, 潘晖, 等. 铜-铝扩散焊及拉伸的分子动力学模拟[J]. 物理学报, 2007, 56(1): 407 − 412. doi: 10.3321/j.issn:1000-3290.2007.01.067

    Liu Hao, Ke Fujiu, Pan Hui, et al. Molecular dynamics simulation of the diffusion bonding and tensile behavior of a Cu-Al interface[J]. Acta Physica Sinica, 2007, 56(1): 407 − 412. doi: 10.3321/j.issn:1000-3290.2007.01.067

图(10)  /  表(1)
计量
  • 文章访问数:  436
  • HTML全文浏览量:  19
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-16
  • 网络出版日期:  2020-09-26
  • 刊出日期:  2020-09-26

目录

    /

    返回文章
    返回