Grain growth and phase transformation in the welded joint HAZ of TiNbV microalloyed steel
-
摘要: 采用激光共聚焦显微镜原位观察方法,研究了大热输入用TiNbV微合金钢在模拟焊接热循环作用下焊接热影响区(HAZ)晶粒长大过程及相变的规律. 热循环过程中加热温度升高至860 ~ 980 ℃时,发生由铁素体和珠光体向奥氏体的转变,1 100 ℃时,奥氏体晶粒开始有明显长大的趋势,1 300 ~ 1 400 ℃时,晶粒以合并长大方式迅速长大;冷却过程中温度降低至1 400 ~ 1 350 ℃时,晶粒以晶界迁移方式缓慢长大,660 ~ 580 ℃时,发生奥氏体迅速向贝氏体转变,焊接HAZ主要由贝氏体与铁素体组成,贝氏体的尺寸是由奥氏体晶粒大小决定的. 热循环高温停留时间延长,奥氏体与贝氏体的形成、终了、转变温度区间均有下降. 结果表明,组织中先共析铁素体含量先降低后增加,贝氏体含量降低,多边形铁素体消失,先共析铁素体含量增加,冷却组织趋于均匀粗大. 焊接过程中,选择合适的高温停留时间可提高组织中IAF的含量,提高力学性能.Abstract: The grain growth and phase transformation in HAZ of TiNbV microalloyed steel under simulated welding thermal cycling were studied by in situ observation method using laser confocal microscope. The results show that the transformation from ferrite and pearlite to austenite is occurred while the heating temperature rises to 860 ~ 980 ℃ during thermal cycling. The austenite grain begins to grow obviously while the temperature reaches 1 100 ℃. At the temperature range of 1 300 ~ 1 400 ℃, the grain grows rapidly with the form of combining. During cooling process, when the temperature declines to 1 400 ~ 1 350 ℃, the grain grows slowly with the form of grain boundary migrating. When the temperature decreases to 660 ~ 580 ℃, the austenite transforms rapidly to bainite. The content of HAZ is mainly composed of bainite and ferrite. The size of austenite grain determines the maximum size of bainite. The formation, transformation and end temperature range of austenite and bainite decreases with the prolongation of the high temperature residence time. The content of proeutectoid ferrite decreases first and then increases, the content of bainite decreases, the polygonal ferrite disappears, and the cooling structure tends to be uniform and coarse. During the welding process, the choosing of appropriate high temperature residence time can increase the content of IAF in HAZ and improve the mechanical properties of the joints.
-
-
图 9 热循环过程中晶粒长大及相变随温度变化的模型
Figure 9. Modeling of the growth and phase transformation of the grains in HAZ with the heating temperature during thermal cycling. (a) original structure; (b) austenitic transition begins at 860 °C; (c) austenitic transition ends at 980 °C; (d) rapid growth of austenite at 1 300 °C; (e) grains merge at 1 400 °C; (f) grains migrate at 1 300 °C; (g) bainite transition begins at 660 °C; (h) bainite transition ends at 580 °C
表 1 试验用钢化学成分(质量分数,%)
Table 1 Chemical composition of the steel plate
C Si Mn P S Ni Nb Al Ti N 0.079 0.2 1.45 0.003 6 0.001 5 0.16 0.021 0.018 0.016 0.005 6 表 2 试验用钢力学性能
Table 2 Mechanical properties of the steel plate
屈服强度ReH/MPa 抗拉强度Rm/MPa 断后伸长率A(%) −40 ℃冲击吸收能量 AKV/J 435 522 28 310 -
[1] 习小军, 赖朝彬, 吴春红, 等. 大线能量焊接船板钢的研究现状与发展[J]. 有色金属科学与工程, 2016, 7(5): 56 − 59. Xi Xiaojun, Lai Chaobin, Wu Chunhong, et al. Research situation and development of ship plate steel by high heat input welding[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 56 − 59.
[2] Hashiba Y, Sasaki K, Kasuya T, et al. Development of welding materials for high deat Input welding compatible with thick steel plates of 460 MPa yield point class for very large container ships[J]. Welding in the World, 2010, 54(1-2): R35 − R41. doi: 10.1007/BF03263482
[3] 李超, 董廷亮, 孔维明, 等. Ti-Ca复合脱氧大线能量焊接用钢中夹杂物的演变[J]. 钢铁, 2019, 54(2): 35 − 40. Li Chao, Dong Tingliang, Kong Weiming, et al. Evolution of inclusions in high heat input welding steel with TiCa compound deoxygenation[J]. Steel, 2019, 54(2): 35 − 40.
[4] 李静, 王华, 曲圣昱, 等. 焊接热循环参数对大线能量焊接用钢EH40热影响区组织和性能的影响[J]. 北京科技大学学报, 2012, 34(7): 788 − 792. Li Jing, Wang Hua, Qu Shengyu, et al. Effect of welding thermal cycle parameters on the microstructure and properties in the heat affected zone of steel EH40 for high heat input welding[J]. Journal of University of Science and Technology Beijing, 2012, 34(7): 788 − 792.
[5] Zhang Lei, Kannengiesser T. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel[J]. Materials Science & Engineering A, 2014, 613: 326 − 335.
[6] 宋峰雨, 李艳梅, 王平, 等. 大热输入焊接接头组织性能研究[D]. 呼和浩特: 内蒙古工业大学学报, 2017, 36(1), 6-9. [7] Bonnevie E, Ferrière G, Ikhlef A, et al. Morphological aspects of martensite-austenite constituents in intercritical and coarse grain heat affected zones of structural steels[J]. Materials Science & Engineering A, 2004, 385(1-2): 352 − 358.
[8] Yu Shengfu, Dai Yili, Yan Ning. Inclusion behavior and microstructure of weld metal with Ce in twin wire high heat input submerged-arc welding[J]. China Welding, 2017, 26(1): 29 − 36.
[9] 胡海江, 徐光, 张玉龙, 等. 先进贝氏体钢奥氏体晶粒长大行为的动态观察[J]. 材料热处理学报, 2014, 35(1): 83 − 87. Hu Haijiang, Xu Guang, Zhang Yulong, et al. Dynamic observation of austenite grain growth behavior of an advanced bainite steel[J]. Journal of Material Heat Treatment, Journal of Material Heat Treatment, 2014, 35(1): 83 − 87.
[10] Zhu Liguang, Wang Yan, Wang Shuoming, et al. Research of microalloy elements to induce intragranular acicular ferrite in shipbuilding steel[J]. Ironmaking & Steelmaking, 2017: 1 − 9.
[11] 刘岩, 王凯, 王建明, 等. 大线能量焊接条件下低合金高强度钢针状铁素体形核影响因素及形核机理研究[J]. 材料导报, 2016, 30(13): 102 − 105. Liu Yan, Wang Kai, Wang Jianming, et al. Acicular ferrite nucleation in high strength low alloy steel during high heat input welding: influences and mechanism[J]. Material Guide, 2016, 30(13): 102 − 105.
[12] Yang Jian, Xu Long, Zhu Kai, et al. Improvement of HAZ toughness of steel plate for high heat input welding by inclusion control with Mg deoxidation[J]. Steel Research International, 2015, 86(6): 619 − 625. doi: 10.1002/srin.201400313
[13] 高丽娜, 张彩军, 顾克井, 等. 高强度船板钢中针状铁素体的原位观察[J]. 钢铁钒钛, 2017, 38(1): 143 − 146. doi: 10.7513/j.issn.1004-7638.2017.01.025 Gao Lina, Zhang Caijun, Gu Kejing, et al. Insitu observation of acicular ferrite in high strength ship-building plate steel[J]. Iron Steel Vanadium Titanium, 2017, 38(1): 143 − 146. doi: 10.7513/j.issn.1004-7638.2017.01.025
[14] 付魁军, 高铭泽, 冷雪松, 等. TiNb钢焊接热影响区微观组织与冲击性能演变规律[J]. 焊接学报, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125 Fu Kuijun, Gao Mingze, Leng Xuesong, et al. Evolution of microstructure and impact property in welding HAZ of TiNb steel[J]. Transactions of the China Welding Institution, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125