高级检索

基于熵模型镀锡银钎料钎焊性能的定量表征

王星星, 上官林建, 何鹏, 龙伟民, 武胜金

王星星, 上官林建, 何鹏, 龙伟民, 武胜金. 基于熵模型镀锡银钎料钎焊性能的定量表征[J]. 焊接学报, 2020, 41(1): 18-22. DOI: 10.12073/j.hjxb.20190702001
引用本文: 王星星, 上官林建, 何鹏, 龙伟民, 武胜金. 基于熵模型镀锡银钎料钎焊性能的定量表征[J]. 焊接学报, 2020, 41(1): 18-22. DOI: 10.12073/j.hjxb.20190702001
WANG Xingxing, SHANGGUAN Linjian, HE Peng, LONG Weimin, WU Shengjin. Quantitative characterization of brazability for Sn-plated Ag brazing filler metals based on entropy model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 18-22. DOI: 10.12073/j.hjxb.20190702001
Citation: WANG Xingxing, SHANGGUAN Linjian, HE Peng, LONG Weimin, WU Shengjin. Quantitative characterization of brazability for Sn-plated Ag brazing filler metals based on entropy model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 18-22. DOI: 10.12073/j.hjxb.20190702001

基于熵模型镀锡银钎料钎焊性能的定量表征

基金项目: 国家自然科学基金资助项目(51705151);中国博士后基金面上资助项目(2019M662011);河南省科技创新人才计划项目(中原学者)(172101510003);河南省产学研合作计划资助项目(152107000072).
详细信息
    作者简介:

    王星星,1984年出生,博士,副教授;主要从事新型钎焊材料性能调控、先进焊接工艺的科研工作;发表论文30余篇;Email:paperwxx@126.com

    通讯作者:

    何鹏,博士,教授,博士研究生导师;Email:hithepeng@hit.edu.cn.

  • 中图分类号: TG 454

Quantitative characterization of brazability for Sn-plated Ag brazing filler metals based on entropy model

  • 摘要: 以BAg50CuZn钎料和BAg34CuZnSn钎料为基材,采用镀覆扩散组合工艺制备了两类镀锡银钎料,利用综合热分析仪、润湿试验炉、万能拉力试验机测定镀锡银钎料的熔化温度区间、润湿面积及钎焊接头抗拉强度,建立了钎料润湿熵和接头强度熵的数学模型,并与熔炼合金化制备的相同Sn含量的传统钎料进行对比. 结果表明,与相同Sn含量的传统钎料相比,镀锡银钎料的润湿熵值更小、强度熵值略高. 同等Sn含量条件下,镀锡银钎料和传统钎料润湿熵值的变化趋势,与对应钎料在316LN不锈钢表面的润湿面积随Sn含量的变化趋势基本一致,强度熵值的变化趋势与对应钎料钎焊316LN不锈钢接头的抗拉强度随Sn含量的变化趋势几乎吻合;润湿熵和强度熵的模型在一定程度上可定量预测镀锡银钎料的钎焊工艺性和接头力学性能.
    Abstract: Two types of Sn-plated AgCuZnSn brazing filler metals were prepared by a combinative process of electroplating and thermal diffusion using BAg50CuZn and BAg34CuZnSn brazing filler metal. The comprehensive thermal analyzer, wetting test furnace and universal tensile testing machine were applied to analyze the melting temperature range, wetting area and tensile strength. The mathematical model of the filler metals wetting entropy and the joint strength entropy were established, and compared with the traditional brazing filler metal prepared by melting alloying under the same condition of Sn content. The wetting entropy of the Sn-plated Ag brazing alloys are smaller than the traditional brazing filler metals, and its joint strength entropy value is slightly higher than the latter. The wetting entropy value of the Sn-electroplated brazing alloys and traditional filler metal are similar to the change trend of the wetting area for those filler metals on the surface of the 316LN stainless steel. The change trend of the brazed joint strength entropy value with those filler metals are basically the same as the tensile strength of the 316LN stainless steel joint with the increase of the Sn content. The experimental results show that the mathematical model of the wetting entropy and the joint strength entropy can quantitatively predict the brazing process and mechanical properties of the Sn-electroplated Ag brazing alloys to a certain extent.
  • 图  1   F1型钎料润湿熵和润湿性对比

    Figure  1.   Comparison of the wetting entropy and wettability with F1 brazing alloys

    图  2   F2型钎料润湿熵和润湿性对比

    Figure  2.   Comparison of the wetting entropy and wettability with F2 brazing alloys

    图  3   F1型钎料接头强度熵和抗拉强度对比

    Figure  3.   Comparison of the joint strength entropy and tensile strength with F1 brazing alloys

    图  4   F2型钎料接头强度熵和抗拉强度对比

    Figure  4.   Comparison of the joint strength entropy and tensile strength with F2 brazing alloys

    表  1   F1型银钎料成分(质量分数,%)

    Table  1   Chemical compositions of F1 brazing alloys

    Sn质量分数w(%)AgCuZnSn
    2.448.3133.5015.802.39
    4.847.2632.2415.704.80
    5.646.9831.8315.615.58
    6.046.8531.6015.536.02
    7.246.2731.1515.367.22
    下载: 导出CSV

    表  2   F2型银钎料成分(质量分数,%)

    Table  2   Chemical compositions of F2 brazing alloys

    Sn质量分数w(%)AgCuZnSn
    4.033.2335.8026.924.05
    4.533.0535.7626.674.52
    5.032.7335.6826.604.99
    5.532.5635.5526.385.51
    6.432.2435.2926.046.43
    下载: 导出CSV

    表  3   钎料吸热峰特征点温度

    Table  3   Characteristic temperature of fillers endothermic peak

    Sn质量分数
    w(%)
    熔化温度T/°C
    镀锡银钎料传统银钎料
    2.446.046.9
    4.839.542.0
    5.638.039.7
    6.037.038.4
    7.234.045.8
    4.035.035.1
    4.533.534.2
    5.031.532.8
    5.531.032.3
    6.422.025.6
    下载: 导出CSV
  • [1]

    Long W M, Zhang G X, Zhang Q K. Insitu synthesis of high strength Ag brazing filler metals during induction brazing process[J]. Scripta Materialia, 2016, 110: 41 − 43. doi: 10.1016/j.scriptamat.2015.07.041

    [2]

    Ma Chaoli, Xue Songbai, Wang Bo. Study on novel Ag-Cu-Zn-Sn brazing filler metal bearing Ga[J]. Journal of Alloys and Compounds, 2016, 688: 854 − 862. doi: 10.1016/j.jallcom.2016.07.255

    [3]

    Li Z R, Cao J, Liu B, et al. Effect of La content on microstructure evolution of 20Ag-Cu-Zn-Sn-P-La filler metals and properties of joints[J]. Science and Technology of Welding & Joining, 2010, 15(1): 59 − 63.

    [4]

    Khorunov V F, Stefaniv B V, Maksymova S V. Effect of nickel and manganese on structure of Ag-Cu-Zn-Sn system alloys and strength of brazed joints[J]. Paton Welding Journal, 2014, 4: 22 − 25.

    [5]

    Li M G, Sun D Q, Qiu X M, et al. Effect of tin on melting temperature and microstructure of Ag-Cu-Zn-Sn filler metals[J]. Materials Science and Technology(United Kingdom), 2005, 21(11): 1318 − 1322.

    [6]

    Lai Zhongmin, Xue Songbai, Han Xianpeng, et al. Study on microstructure and property of brazed joint of AgCuZn-X(Ga, Sn, In, Ni) brazing alloy[J]. Rare Metal Materials and Engineering, 2010, 39(3): 397 − 400. doi: 10.1016/S1875-5372(10)60087-2

    [7]

    Winiowski A, Rózanski M. Impact of tin and nickel on the brazing properties of silver filler metals and on the strength of brazed joints made of stainless steels[J]. Archives of Metallurgy and Materials, 2013, 58(4): 1007 − 1011. doi: 10.2478/amm-2013-0118

    [8] 龙伟民, 张冠星, 张青科, 等. 钎焊过程原位合成高强度银钎料[J]. 焊接学报, 2015, 36(11): 1 − 4.

    Long Weimin, Zhang Guanxing, Zhang Qingke, et al. In-situ synthesis of high strength Ag brazing filler metals during brazing process[J]. Transactions of the China Welding Institution, 2015, 36(11): 1 − 4.

    [9] 高歌, 胡建华, 程呈, 等. 电磁压制多元金属混合粉末的压型方程[J]. 中国有色金属学报, 2015, 25(7): 1937 − 1942.

    Gao Ge, Hu Jianhua, Cheng Cheng, et al. Forming equation about multivariate mixed metal powder by electromagnetic compaction[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(7): 1937 − 1942.

    [10] 王星星, 李帅, 彭进, 等. 基于镀锡银钎料焊304不锈钢接头的腐蚀行为[J]. 焊接学报, 2018, 39(4): 63 − 66.

    Wang Xingxing, Li Shuai, Peng Jin, et al. Corrosion behaviors of 304 stainless steel joints brazed with Sn-electroplated Ag brazing alloys[J]. Transactions of the China Welding Institution, 2018, 39(4): 63 − 66.

    [11]

    Benisek A, Dachs E. A relationship to estimate the excess entropy of mixing: application in silicate solid solutions and binary alloys[J]. Journal of Alloys and Compounds, 2012, 527: 127 − 131. doi: 10.1016/j.jallcom.2012.03.007

    [12]

    Carvalhoa A M, Coelhob A A, Von Rankec P J, et al. The isothermal variation of the entropy (ΔST)may be miscalculated from magnetization isotherms in some cases: MnAs and Gd5Ge2Si2 compounds as examples[J]. Journal of Alloys and Compounds, 2011, 509: 3452 − 3456. doi: 10.1016/j.jallcom.2010.12.088

    [13]

    Ming Zhu, Wang Kehong, Qu Tianpeng, et al. Thermodynamic study on welding wire design of high nitrogen austenitic stainless steel[J]. China Welding (English Edition), 2019, 28(1): 49 − 55.

    [14] 王星星, 龙伟民, 何鹏, 等. 时效处理对镍/巴氏合金界面组织及性能的影响[J]. 焊接学报, 2019, 40(8): 113 − 117.

    Wang Xingxing, Long Weimin, He Peng, et al. Effect of aging treatment on interfacial microstructure and mechanical properties of Ni/babbitt alloy[J]. Transactions of the China Welding Institution, 2019, 40(8): 113 − 117.

    [15]

    Wang Xingxing, Peng Jin, Cui Datian. Microstructure and mechanical properties of stainless steel/brass joints brazed by Sn-electroplated Ag brazing filler metals[J]. Journal of Materials Engineering and Performance, 2018, 27(5): 2233 − 2238.

    [16] 纠永涛, 轩庆庆, 高雅, 等. 银基钎料铸锭微区成分及组织的变化规律[J]. 焊接学报, 2018, 39(5): 82 − 86.

    Jiu Yongtao, Xuan Qingqing, Gao Ya, et al. Change laws of micro-composition and microstructure of silver-based brazing filler metal ingot[J]. Transactions of the China Welding Institution, 2018, 39(5): 82 − 86.

  • 期刊类型引用(9)

    1. 关皓真,张裕,孙磊,吴艳明. 脉冲熔化极气体保护焊弧长神经网络建模及参数预测. 材料开发与应用. 2024(03): 28-35 . 百度学术
    2. 王超,陈信宇,吴春彪,李雷,王洁. 基于快速蜜蜂试验法的304不锈钢激光焊工艺优化. 焊接学报. 2023(02): 102-110+135 . 本站查看
    3. 杜晓辉,陈凡红,刘帅,朱敏杰,许佳豪. 压力传感器波纹膜片低应力激光焊接工艺. 光学精密工程. 2023(11): 1652-1659 . 百度学术
    4. 杨华庆,张建护,唐德渝,王克宽. 机器人立体视觉系统标定误差预测补偿技术. 控制工程. 2022(04): 757-762 . 百度学术
    5. 朱胜,张雨豪,郭迎春,王晓明,常青,赵阳. 高能微弧沉积H65黄铜涂层试验研究. 热加工工艺. 2021(14): 102-104+108 . 百度学术
    6. 易润华,邓黎鹏,程东海,刘奋成. 基于多指标综合评分方差分析的镍铬合金储能缝焊工艺研究. 材料导报. 2021(14): 14161-14165 . 百度学术
    7. 刘晓明,刘威,李龙女,朱高嘉,姜文涛. 基于改进神经网络和遗传算法的真空灭弧室优化设计. 真空科学与技术学报. 2020(04): 359-364 . 百度学术
    8. 任书文,陈士忠,刘子金,夏忠贤,侯爱山,王永华. 钢筋骨架焊接工艺参数的优化研究. 建筑机械化. 2020(11): 98-101 . 百度学术
    9. 尹燕,赵超,潘存良,路超,张瑞华. 气体流量对射频等离子体球化GH4169合金粉末的影响. 焊接学报. 2019(11): 100-105+165 . 本站查看

    其他类型引用(9)

图(4)  /  表(3)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  10
  • PDF下载量:  18
  • 被引次数: 18
出版历程
  • 收稿日期:  2019-07-01
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回