高级检索

旋转电弧GMAW堆焊短路过渡熔池动态仿真

毛志伟, 黄涛, 周少玲

毛志伟, 黄涛, 周少玲. 旋转电弧GMAW堆焊短路过渡熔池动态仿真[J]. 焊接学报, 2020, 41(1): 44-49. DOI: 10.12073/j.hjxb.20190528002
引用本文: 毛志伟, 黄涛, 周少玲. 旋转电弧GMAW堆焊短路过渡熔池动态仿真[J]. 焊接学报, 2020, 41(1): 44-49. DOI: 10.12073/j.hjxb.20190528002
MAO Zhiwei, HUANG Tao, ZHOU Shaoling. Dynamic simulation of GMAW short circuiting transfer pool in rotating arc surfacing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 44-49. DOI: 10.12073/j.hjxb.20190528002
Citation: MAO Zhiwei, HUANG Tao, ZHOU Shaoling. Dynamic simulation of GMAW short circuiting transfer pool in rotating arc surfacing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 44-49. DOI: 10.12073/j.hjxb.20190528002

旋转电弧GMAW堆焊短路过渡熔池动态仿真

基金项目: 国家自然科学基金资助项目(51265036)
详细信息
    作者简介:

    毛志伟,1969年出生,博士,副教授;主要从事机器人与焊接自动化研究;发表论文30多篇;Email:ndmao@163.com

  • 中图分类号: TG 444

Dynamic simulation of GMAW short circuiting transfer pool in rotating arc surfacing

  • 摘要: 为探究旋转电弧GMAW堆焊短路过渡时熔池的温度和对流分布规律,利用Flow-3D软件建立三维数学模型,采用球形旋转热源模型,考虑重力、熔滴拖拽力、表面张力、浮力作用,模拟了堆焊状态下,工件材料为Q235的旋转电弧GMAW短路过渡的熔池成形规律. 采用流体体积法追踪熔滴过渡和熔池表面的自由变形,并分析熔滴进入熔池时熔池内部温度场和流场的变化. 结果表明,熔池形成过程中,旋转熔滴对熔池有搅拌作用,并使熔池内部液态金属活性增强,流速变快,熔池内部液态金属体积变大,熔池的宽度变大. 模拟预测的焊缝尺寸、形状与试验吻合良好. 为优化焊接工艺参数、改善旋转电弧GMAW堆焊焊缝质量提供参考依据.
    Abstract: In order to explore the forming temperature and convective distribution law of the gas metal arc welding (GMAW) short circuiting transfer pool formed by rotary arc surfacing, a three-dimensional mathematical model was established by using Flow-3D software, and a spherical rotaing heat source model was used to simulate the molten pool forming law during the short-circuit transition of the rotating arc in GMAW with workpiece material Q235, considering the gravity, drag force, surface tension and buoyancy. The volume of fluid (VOF) method is used to trace the droplet transition and the free deformation of the pool surface, and the changes of temperature field and flow field inside the molten pool when the droplet enters the pool was analyzed. The results show that during the formation of the molten pool, the rotating droplet has a stirring effect on the molten pool, and makes the liquid metal in the molten pool more active, the flow rate faster, the volume of the liquid metal in the molten pool becomes larger, and the width of the molten pool becomes larger. The simulated weld size and shape are in good agreement with the test, which provide a reference for optimizing the welding process parameters to improve the quality of the rotaryarc GMAW surfacing weld.
  • 图  1   焊接物理模型

    Figure  1.   Physical model of welding

    图  2   不同时刻熔池温度场分布

    Figure  2.   Temperature field distribution of weld pool at different time. (a) t = 3.16 s;(b) t = 3.17 s;(c) t = 3.18 s;(d) t = 3.2 s

    图  3   不同时刻熔池流场分布

    Figure  3.   Velocity field distribution of weld pool at different time. (a) t = 3.16 s;(b) t = 3.165 s;(c) t = 3.17 s;(d) t = 3.175 s;(e) t = 3.18 s;(f) t = 3.185 s

    图  4   焊接过程温度场分布

    Figure  4.   Temperature field distribation of welding process. (a) t = 3.15 s;(b) t = 3.16 s;(c) t = 3.17 s;(d) t = 3.18 s

    图  5   焊接试验装置

    Figure  5.   Welding experiment device

    图  6   模拟与试验结果对比

    Figure  6.   Comparison of simulation results with experimental results. (a) experimental weld pool section;(b) simulated weld pool section

    表  1   焊接试验参数

    Table  1   Welding experiment parameters

    焊件材料焊接电压
    U/V
    焊接电流
    I/A
    焊接速度
    v /(mm·s−1)
    旋转频率
    f/Hz
    焊丝伸出长度
    l/mm
    旋转半径
    r/mm
    保护气流量
    q/(L·min−1)
    焊件初始温度
    T/℃
    保护气
    Q235A232003020123103080%Ar + 20%CO2
    下载: 导出CSV
  • [1]

    Wu L, Cheon J, Kiran D V, et al. CFD simulations of GMA welding of horizontal fillet joints based on coordinate rotation of arc models[J]. Journal of Materials Processing Technology, 2016, 231(5): 221 − 238.

    [2]

    Cho D W, Na S J. Molten pool behaviors for second pass V-groove GMAW[J]. International Journal of Heat and Mass Transfer, 2015, 88: 945 − 956. doi: 10.1016/j.ijheatmasstransfer.2015.05.021

    [3]

    Wang Y, Tsai H L. Impingement of filler droplets and weld pool dynamics during gas metal arc welding process[J]. International Journal of Heat and Mass Transfer, 2001, 44(11): 2067 − 2080. doi: 10.1016/S0017-9310(00)00252-0

    [4]

    Hozoorbakhsh A, Ismail M I S, Aziz N B A. A computational analysis of heat transfer and fluid flow in high-speed scanning of laser micro-welding[J]. International Communications in Heat and Mass Transfer, 2015, 68: 178 − 187. doi: 10.1016/j.icheatmasstransfer.2015.08.013

    [5]

    Wu D S, Hua X M, Ye D J, et al. Understanding of humping formation and suppression mechanisms using the numerical simulation[J]. International Journal of Heat and Mass Transfer, 2017, 104(1): 634 − 643.

    [6] 吴东升, 华学明, 叶定剑, 等. MIG焊接熔池形成与凝固过程数值模拟[J]. 焊接, 2015(9): 6 − 11.

    Wu Dongsheng, Hua Xueming, Ye Dingjian, et al. Numerical analysis of weld pool formation and solidification in MIG welding process[J]. Welding & Joining, 2015(9): 6 − 11.

    [7]

    Cho D W, Kiran D V, Song W H, et al. Molten pool behavior in the tandem submerged arc welding process[J]. Journal of Materials Processing Technology, 2014, 214(11): 2233 − 2247. doi: 10.1016/j.jmatprotec.2014.04.032

    [8]

    Tong L G, Gu J C, Yin S W, et al. Impacts of torch moving on phase change and fluid flow in weld pool of SMAW[J]. International Journal of Heat and Mass Transfer, 2016, 100: 949 − 957. doi: 10.1016/j.ijheatmasstransfer.2016.04.032

    [9]

    Desmaison O, Bellet M, Guillemot G. A level set approach for the simulation of the multipass hybrid laser/GMA welding process[J]. Computational Materials Science, 2014, 91: 240 − 250. doi: 10.1016/j.commatsci.2014.04.036

    [10] 张世亮, 胥国祥, 曹庆南, 等. 基于FLUENT软件的GMAW焊熔池动态行为数值分析模型[J]. 焊接学报, 2018, 39(2): 75 − 79.

    Zhang Shiliang, Xu Guoxiang, Cao Qingnan, et al. A numerical analysis model of weld pool dynamic behavior in GMAW based on FLUENT software[J]. Transactions of the China Welding Institution, 2018, 39(2): 75 − 79.

    [11]

    Qiao L, Han T, Zhang H J, et al. Numerical study of fillet weld leg height of sleeve repair welding for in-service pipeline[J]. China Welding, 2018, 27(1): 32 − 40.

    [12] 刘维球, 单彦广, 袁张. GMAW焊接熔滴过渡过程的模拟研究[J]. 热加工工艺, 2016, 45(21): 216 − 219.

    Liu Weiqiu, Shan Yanguang, Yuan Zhang. Simulation of droplet transfer process in GMAW[J]. Hot Working Technology, 2016, 45(21): 216 − 219.

  • 期刊类型引用(1)

    1. 王兴磊,杨赫然,孙兴伟,赵泓荀,潘飞. 基于WOA-RBF的螺杆转子双砂带磨削表面粗糙度及材料去除率预测. 制造技术与机床. 2025(04): 172-179 . 百度学术

    其他类型引用(8)

图(6)  /  表(1)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  11
  • PDF下载量:  25
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-05-27
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2019-12-31

目录

    /

    返回文章
    返回