高级检索

锌夹层对铝合金超声搅拌摩擦点焊Hook缺陷的影响

马琳, 李鸣申, 温琦, 姬书得, 周长壮

马琳, 李鸣申, 温琦, 姬书得, 周长壮. 锌夹层对铝合金超声搅拌摩擦点焊Hook缺陷的影响[J]. 焊接学报, 2019, 40(4): 125-132. DOI: 10.12073/j.hjxb.2018400112
引用本文: 马琳, 李鸣申, 温琦, 姬书得, 周长壮. 锌夹层对铝合金超声搅拌摩擦点焊Hook缺陷的影响[J]. 焊接学报, 2019, 40(4): 125-132. DOI: 10.12073/j.hjxb.2018400112
MA Lin, LI Mingshen, WHEN Qi, JI Shude, ZHOU Changzhuang. Effect of zinc interlayer on Hook defects of aluminum alloy ultrasonic assisted friction stir spot welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 125-132. DOI: 10.12073/j.hjxb.2018400112
Citation: MA Lin, LI Mingshen, WHEN Qi, JI Shude, ZHOU Changzhuang. Effect of zinc interlayer on Hook defects of aluminum alloy ultrasonic assisted friction stir spot welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 125-132. DOI: 10.12073/j.hjxb.2018400112

锌夹层对铝合金超声搅拌摩擦点焊Hook缺陷的影响

基金项目: 

国家自然科学基金青年基金资助项目(51705338);航空科学基金资助项目(2016ZE54024);辽宁省教育厅科学技术研究项目(L201731);辽宁省自然基金面上项目(20180550471)

详细信息
    作者简介:

    马 琳,女,1984年出生,博士,副教授. 从事超声辅助先进连接技术研究.发表文章20余篇. Email: lynn128@126.com

  • 中图分类号: TG 456.9

Effect of zinc interlayer on Hook defects of aluminum alloy ultrasonic assisted friction stir spot welding joint

  • 摘要: 对于铝合金的搅拌摩擦点焊,Hook缺陷是制约接头焊接质量的原因之一. 文中提出一种添加锌夹层的超声搅拌摩擦点焊新工艺,在利用超声可提高材料流动性及促进元素扩散的同时,添加纯锌中间层,使界面形成低熔点共晶进一步促进Hook区材料的冶金结合,从而改善Hook形貌,提升接头焊接质量. 结果表明,添加锌夹层可明显改善接头Hook形貌,显著提高了Hook区有效连接面积. 在不同热输入条件下,添加锌夹层后超声搅拌摩擦点焊接头的拉剪强度均有所提高. 当转速为600和1 200 r/min时,添加锌夹层比常规超声搅拌摩擦点焊工艺得到的接头拉剪失效载荷分别提升了21.36%和12.79%.
    Abstract: Hook defect is one of the factors that restrict the quality of aluminum alloy friction stir spot welding (FSSW) joints. In this paper, a new process of ultrasonic friction stir spot welding (UAFSSW) with zinc interlayer was proposed. Ultrasonic vibration improved the fluidity of the material and promoted the elements diffusion. Meanwhile, by adding pure zinc interlayer, the rapid metallurgical bonding of Hook zone materials can be realized, therefore, the quality of UAFSSW joint can be improved. As the results shown, compared with conventional UAFSSW method, adding zinc interlayer had obvious positive effects on Hook forming of joint. Under different heat input conditions, tensile-shear strengths of UAFSSW joints increased by adding zinc interlayer. The tensile-shear failure load of the joint obtained by adding zinc interlayer method improves 21.36% and 12.79% than conventional UAFSSW process when the rotational speed is 600 and 1 200 r/min, respectively.
  • [1] 岳玉梅, 周振鲁, 姬书得, 等. 半螺纹搅拌针对2024铝合金搅拌摩擦搭接焊力学性能影响[J]. 焊接学报, 2016, 37(10): 69 − 72
    [2]

    Yue Yumei, Zhou Zhenlu, Ji Shude, et al. Effect of half-threaded pin on mechanical properties of friction stir lap welded alclad 2024 aluminum alloy[J]. Transactions of the China Welding Institution, 2016, 37(10): 69 − 72

    [3]

    Zhang Zhao, Zhang Hongwu. Simulation of 3D material flow in friction stir welding of AA6061-T6[J]. China Welding, 2008, 17(1): 57 − 63.

    [4]

    Fu Tian, Li Wenya, Yang Xiawei, et al. State-of-the-art of friction stir spot welding[J]. Journal of Materials Engineering, 2015, 43(4): 102 − 114

    [5]

    Ji Shude, Zhuo Bin, Ma Lin, et al. Simulation of material flow behavior during refill friction stir spot welding process[J]. Transactions of the China Welding Institution, 2016, 37(4): 39 − 42

    [6] 傅 田, 李文亚, 杨夏炜, 等. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102 − 114
    [7]

    Zhang Yong, Ye Wu, Zhou Yunyun, et al. Defect repair of resistance spot welded aluminum alloy joint by friction stirring[J]. Transactions of the China Welding Institution, 2017, 38(3): 17 − 21

    [8]

    Sarkar R, Pal T K, Shome M. Material flow and intermixing during friction stir spot welding of steel[J]. Journal of Materials Processing Technology, 2016, 227: 96 − 109.

    [9]

    Kim J R, Ahn E Y, Das H, et al. Effect of tool geometry and process parameters on mechanical properties of friction stir spot welded dissimilar aluminum alloys[J]. International Journal of Precision Engineering & Manufacturing, 2017, 18(3): 445 − 452.

    [10]

    Ma Yinan, Tao Wang, Chen Yanbin. Laser spot welding of LF6 aluminum with double laser beams[J]. Infrared & Laser Engineering, 2014, 43(3): 707 − 711

    [11] 姬书得, 卓 彬, 马 琳, 等. 回填式搅拌摩擦点焊过程的材料流动规律模拟[J]. 焊接学报, 2016, 37(4): 39 − 42
    [12]

    Liu Xinbo, Qiao Fengbin, Zhou Faquan, et al. Simulation and experimental research for ultrasonic assisted filling friction stir spot welding of aluminum alloy[J]. Mechanical Science & Technology for Aerospace Engineering, 2016, 35(9): 1391 − 1395

    [13] 张 勇, 叶 武, 周昀芸, 等. 铝合金电阻点焊接头缺陷的搅拌摩擦修复[J]. 焊接学报, 2017, 38(3): 17 − 21
    [14]

    Pashazadeh H, Gheisari Y, Hamedi M. Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm[J]. Journal of Intelligent Manufacturing, 2016, 27(3): 549 − 559.

    [15] 马轶男, 陶 汪, 陈彦宾. LF6铝合金双光束激光点焊工艺研究[J]. 红外与激光工程, 2014, 43(3): 707 − 711
    [16]

    Gerlich A, Su P, Yamamoto M, et al. Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy[J]. Journal of Materials Science, 2007, 42(14): 5589 − 5601.

    [17]

    Ibrahim M. Spot welding of 6061 aluminum alloy by friction stir spot welding process[J]. Engineering Technology & Applied Science Research, 2017, 3(3): 1629 − 1632.

    [18]

    Sajed M, Bisadi H. Experimental failure study of friction stir spot welded similar and dissimilar aluminum alloys[J]. Welding in the World, 2016, 60(1): 33 − 40.

    [19]

    Lathabai S, Painter M J, Cantin G, et al. Friction spot joining of an extruded Al–Mg–Si alloy[J]. Scripta Materialia, 2006, 55(10): 899 − 902.

    [20] 刘新波, 乔凤斌, 周法权, 等. 超声辅助铝合金填充式搅拌摩擦点焊的仿真和试验研究[J]. 机械科学与技术, 2016, 35(9): 1391 − 1395
    [21]

    Zhang C Q, Robson J D, Prangnell P B. Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4[J]. Journal of Materials Processing Tech, 2016, 231: 382 − 388.

    [22]

    Park K. Development and analysis of ultrasonic assisted friction stir welding process[J]. Dissertations & Theses - Gradworks, 2009, 222(10): 91 − 102.

    [23]

    Ji S D, Li Z W, Ma L, et al. Investigation of ultrasonic assisted friction stir spot welding of magnesium alloy to aluminum alloy[J]. Strength of Materials, 2016, 48(1): 2 − 7.

    [24]

    Rostamiyan Y, Seidanloo A, Sohrabpoor H, et al. Experimental studies on ultrasonically assisted friction stir spot welding of AA6061[J]. Archives of Civil & Mechanical Engineering, 2015, 15(2): 335 − 346.

    [25]

    MacDonald W D, Eagar T W. Transient liquid phase bonding[J]. Annual Review of Materials Science, 1992, 22(1): 23 − 46.

    [26]

    Askew J R, Wilde J F, Khan T I. Transient liquid phase bonding of 2124 aluminium metal matrix composite[J]. Metal Science Journal, 2013, 14(9–10): 920 − 924.

    [27]

    Niu S, Ji S, Yan D, et al. AZ31B/7075-T6 alloys friction stir lap welding with a zinc interlayer[J]. Journal of Materials Processing Technology, 2019, 263: 82 − 90.

  • 期刊类型引用(3)

    1. 王颖,高胜,戴哲. 基于CNN-Transformer混合网络的焊缝激光条纹分割. 中国激光. 2024(24): 113-124 . 百度学术
    2. 乐猛,张华,叶艳辉,尚志军,赵琪. 膜式壁焊缝图像处理及其识别方法. 热加工工艺. 2021(01): 107-111 . 百度学术
    3. 张世宽,吴清潇,林智远. 焊缝图像中结构光条纹的检测与分割. 光学学报. 2021(05): 88-96 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  178
  • HTML全文浏览量:  2
  • PDF下载量:  4
  • 被引次数: 4
出版历程
  • 收稿日期:  2018-10-28

目录

    /

    返回文章
    返回