R60702/TAI/16MnIII复合板爆炸焊接数值模拟与试验
Numerical simulation and experiment on explosive welding of R60702/TA1/16MnIII composite plate
-
摘要: 随着爆炸焊接技术的发展,锆−钢复合板作为一种特殊的耐蚀复合材料,结合了锆优良的耐蚀性能和钢的高强度的优点,在工业中的需求量也逐步增加. 以爆炸焊接理论为基础,采用数值模拟和试验分析相结合的方法,在ANSYS/LS-DYNA软件中模拟R60702/TAI/16MnIII复合板不同间隙值组合下爆炸焊接的动态过程. 分析间隙值对整个R60702/TAI/16MnIII复合板爆炸焊接成形的影响. 结果表明,当锆−钛间距/钛−钢间距取值为12/6 mm时,可以实现良好焊接. 对试验焊接后R60702/TAI/16MnIII复合板上不同位置处的试样进行扫描电镜分析,观察复合板界面的结合状况,为选择更合适的工艺条件提供数据支撑,有利于指导生产实践.Abstract: With the development of explosive welding technology, the demands of explosive welding of Zr/Steel plate are increasing. Composite plate of the Zr/Steel, as a specific anti-corrosion composite material, possesses the combined characteristics of the excellent corrosion resistance property of zirconium and the high-strength property of steel. Based on the theory of explosive welding, the dynamic process of the explosive welding was simulated by ANSYS/LS-DYNA software. The influences of gap values on welding joint formations of the R60702/TAI/16MnIII metal sheets were analyzed. The results showed that when the assorted gaps among zirconium and titanium/titanium and steel were 12 mm and 6 mm, the welding quality was favorable. Interfacial bonding of the R60702/TAI/16MnIII composite material obtained by explosive welding experiment was studied by a scanning electron microscope. These experimental data could be used to choose the suitable technical conditions, which was beneficial to guiding production practice.
-
-
[1] 刘小鱼. 平板金属爆炸焊接原理及试验研究[D]. 内蒙古: 内蒙古工业大学, 2005. [2] 唐文龙. 不锈钢/钢复合板爆炸焊接试验与数值模拟[D]. 南京: 南京理工大学, 2013. [3] 孙万仓, 贺旭明, 孙胜奇. 锆/钢复合板设备结构设计分析[J]. 钛工业进展, 2012, 29(1): 39 ? 41
Sun Wancang, He Xuming, Sun Shengqi. A brief introduction on the structure design of Zr/steel clad plate equipments[J]. Titanium Industry Progress, 2012, 29(1): 39 ? 41[4] Lysak V I, Kuzmin S V. Energy balance during explosive welding[J]. Journal of Materials Processing Technology, 2015, 222: 356 ? 364. [5] 王宇新, 杨文彬, 李晓杰. 爆炸焊接二维复板飞行姿态计算机仿真[J]. 爆破器材, 1999, 28(5): 1 ? 4
Wang Yuxin,Yang Wenbin,Li Xiaojie. Computerized simulation of two dimensional flying attitude of fly plate in explosive welding[J]. Explosive Materials, 1999, 28(5): 1 ? 4[6] 何 涛. ANSYS 10.0/LS-DYNA非线性有限元分析实例指导教程(附光盘)[M]. 机械工业出版社, 2007. [7] 刘士彬, 刘翠荣, 吴志生. 爆炸焊接的界面结合及成波机理研究现状[J]. 机械工程与自动化, 2012(4): 210 ? 211
Liu Shibin,Liu Cuirong,Wu Zhisheng. Research status of mechanism for formation of interface and inter-wave of explosive welding[J]. Journal of Mechanics Engineering and Automation, 2012(4): 210 ? 211[8] 唐长刚. LS-DYNA有限元分析及仿真[M]. 电子工业出版社, 2014. [9] Hokamoto K, Fujita M, Shimokawa H, et al. A new method for explosive welding of Al/ZrO2 joint using regulated underwater shock wave[J]. Journal of Materials Processing Technology, 1999, 85(s1?3): 175 ? 179. [10] Kaya Y, Kahraman N. An investigation into the explosive welding/cladding of grade a ship steel/AISI 316L austenitic stainless steel[J]. Materials & Design, 2013, 52(24): 367 ? 372. [11] 郑远谋. 不锈钢—碳钢爆炸复合板和爆炸焊接机理探讨[J]. 材料研究与应用, 1993(2): 133 ? 138
Zheng Yuanmou. Introduction of explosive compound-plate of stainless steel, and carbon steel and the inquiry of explosive welding mechanism[J]. Materials Research and Application, 1993(2): 133 ? 138[12] 张素红. 纯锆及铑锆金属间化合物结构与物性的第一性原理研究[D]. 秦皇岛: 燕山大学, 2013. -
期刊类型引用(8)
1. 周桂娟,童志,陈晓华,郑文跃,熊道英,王艳林. X80管线钢焊接与焊缝开裂影响因素研究进展. 材料导报. 2022(02): 168-176 . 百度学术
2. 朱敏,张延松. X80埋弧焊热影响区的微观组织与局部软化行为分析. 焊接学报. 2021(04): 69-73+96+100 . 本站查看
3. 张岩. 高强钢在轻量化结构设计中的应用及其焊接. 电焊机. 2021(12): 34-40+128 . 百度学术
4. 李赫,王磊,黄勇,周明,周琦,王克鸿. 预热温度对AH36激光焊缝组织及硬度的影响. 焊接. 2021(10): 25-28+62 . 百度学术
5. 卓晓,李立新,李弟,刘译洋,孔海君,赵丹. EH36-Z35钢在低温环境中的焊接冷裂纹敏感性. 机械工程材料. 2020(08): 47-51 . 百度学术
6. 卢尚文,董常福,龚艳丽,何忆斌,张凯. 960 MPa级高强钢焊接热影响区连续冷却曲线的测定及焊接工艺评定. 焊接. 2019(07): 50-56+68 . 百度学术
7. 马俊,朱敏,袁永锋,郭绍义,尹思敏,张强. 交流干扰下不同组织X100钢在格尔木土壤模拟溶液中的腐蚀行为. 表面技术. 2019(08): 272-279 . 百度学术
8. 严春妍,元媛,张可召,吴立超,王宝森. X100管线钢焊接冷裂纹敏感性. 焊接学报. 2019(12): 41-46+162-163 . 本站查看
其他类型引用(5)
计量
- 文章访问数: 549
- HTML全文浏览量: 8
- PDF下载量: 3
- 被引次数: 13