高级检索

考虑侧壁熔合的摆动电弧窄间隙MAG焊温度场热源模型

Heat source model and temperature field simulation for the fusion of side wall welded by weaving arc narrow gap MAG welding

  • 摘要: 为了研究窄间隙焊缝摆动电弧MAG焊焊缝成形影响因素,需对其温度场分布情况进行分析. 针对摆动速度大于焊接速度的前提条件,分析了焊接层数不同导致的焊缝厚度不同以及磁偏吹对侧壁的影响,对多层单道焊建立了两种不同的热源模型. 同时采用Comsol有限元分析软件,实现了热源模型的加载和温度场的模拟. 结果表明,对于第一层焊(焊缝厚度3.6 mm)可以采用高斯—广义双椭球复合热源;对于第三层焊(焊缝厚度7.8 mm)可以采用双椭球—广义双椭球复合热源. 对比同时刻温度场模拟结果的焊缝截面与实际试验结果的焊缝截面,发现两者侧壁熔深情况基本吻合. 为后续对焊缝成形影响的进一步研究奠定了基础.

     

    Abstract: Welding temperature field was analyzed to study the affecting factors of joint formation of weaving arc narrow gap MAG welding. Under the prerequisite that the wave speed was not far higher than welding speed, effects of magnetic blow and welding thickness caused by different welding layers on the side wall were analyzed, while two heat source models for multilayer single-channel welding were established. The Comsol software was used to simulate load the heat source model and simulate the temperature field. The results showed that Gauss-generalized double ellipsoid heat source could be applied for first layer (3.6 mm) and doubled ellipsoid-generalized double ellipsoid heat source could be used for the third layer (7.8 mm). The fusion on the side wall of the simulated results approximately agreed with those of the experiments. The results were helpful for the further research about the weld formation.

     

/

返回文章
返回