高级检索

基于KF-GPR的熔池关键特征建模方法

董航,丛明,ZhangYuming,陈和平

董航,丛明,ZhangYuming,陈和平. 基于KF-GPR的熔池关键特征建模方法[J]. 焊接学报, 2018, 39(12): 49-52. DOI: 10.12073/j.hjxb.2018390296
引用本文: 董航,丛明,ZhangYuming,陈和平. 基于KF-GPR的熔池关键特征建模方法[J]. 焊接学报, 2018, 39(12): 49-52. DOI: 10.12073/j.hjxb.2018390296
DONG Hang, CONG Ming, ZHANG Yuming, CHEN Heping. Characteristic performance modeling method for weld pool based on KF-GPR[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 49-52. DOI: 10.12073/j.hjxb.2018390296
Citation: DONG Hang, CONG Ming, ZHANG Yuming, CHEN Heping. Characteristic performance modeling method for weld pool based on KF-GPR[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 49-52. DOI: 10.12073/j.hjxb.2018390296

基于KF-GPR的熔池关键特征建模方法

Characteristic performance modeling method for weld pool based on KF-GPR

  • 摘要: 针对自动焊接智能化程度相对较低的问题,提出一种基于在线视觉反馈的卡尔曼滤波-高斯过程回归(kalman filter gaussian process regression, KF-GPR)的建模方法,分析了建模方法的理论可行性,建立了熔池关键动态特征与焊接参数的最优预测模型. 相比于传统统计方法,KF-GRP可以更准确的估计动态焊接过程的分布形式与参数,具有高度的鲁棒性和容错性,并能得到更加合理的模型. 设计了304不锈钢不填丝TIG焊试验,利用试验取得的8 423组试验数据进行建模并验证. 结果表明,KF-GPR能有效地抑制信号噪声,对熔池特征进行快速、高精度建模,为后续焊接动态控制奠定基础.
    Abstract: To help an automatic welding machine on reasoning dynamic welding process, a Kalman Filter Gaussian Process Regression (KF-GPR) model was proposed, and its theoretical basis was annualized. A prediction model was established later. Compared to conventional statistic method, the KF-GRP method can better estimate the distributed form and parameters for a dynamic welding process, which had higher robustness and fault tolerance. TIG welding experiment of the 304 stainless steel was carried out to verify the method. Totally 8 423 pairs of experiment data were collected and used for the model. The modeling results showed the proposed KF-GPR can suppress noises and provide fast and accurate model, which is essential for future online control experiment.
  • [1] Chen H, Li B, Gravel D, et al. Robot learning for complex manufacturing process[C]//2015 IEEE International Conference on Industrial Technology (ICIT), 2015: 3207?3211.
    [2] Liu Y K, Zhang W J, Zhang Y M. A tutorial on learning human welder’s behavior: sensing, modeling, and control[J]. Journal of Manufacturing processes, 2014, 16(1): 123 ? 136.
    [3] Song H, Zhang Y M. Measurement and analysis of three dimensional specular gas tungsten arc weld pool surface[J]. Welding Research, 2008, 87(4): 85s ? 95s.
    [4] 高向东, 张 弛, 周晓虎. 微间隙焊缝磁光成像NN-KF跟踪算法[J]. 焊接学报, 2017, 38(1): 9 ? 12
    Gao xiangdong, Zhang Chi, Zhou Xiaohu. NN-KF of magneto-optical imaging for micro-gap seam tracking[J]. Transautions of the China Welding Institution, 2017, 38(1): 9 ? 12
    [5] Rasmussen C E. Gaussian processes for machine learning[J]. MIT Press, 2006, 2(3): 4.
    [6] Dong Hang, Cong Ming, Liu Yukang, et al. Predicting characteristic performance for arc welding process[C]//Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2016 IEEE International Conference on. IEEE, 2016: 7?12.
  • 期刊类型引用(3)

    1. 庄明祥,刘永强,刘波,王维贤,龙健,张林杰. TC4钛合金承重框双道双侧不等熔深EBW接头组织与性能研究. 稀有金属材料与工程. 2021(08): 2933-2940 . 百度学术
    2. 杨世亮,李立航,戴浩,李智勇,赵桐. 电子束焊接对调质15CrMnMoVA高强钢组织及性能的影响. 金属热处理. 2021(10): 187-193 . 百度学术
    3. 洪敏,王善林,孙文君,吴鸣,徐勇. 航空高强钢电子束焊接研究现状. 焊接. 2020(07): 19-29+61-62 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  453
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 4
出版历程
  • 收稿日期:  2017-08-20

目录

    /

    返回文章
    返回