高级检索

TC4钛合金电弧增材制造叠层组织特征

李雷,于治水,张培磊,庄乔乔,聂云鹏

李雷,于治水,张培磊,庄乔乔,聂云鹏. TC4钛合金电弧增材制造叠层组织特征[J]. 焊接学报, 2018, 39(12): 37-43. DOI: 10.12073/j.hjxb.2018390294
引用本文: 李雷,于治水,张培磊,庄乔乔,聂云鹏. TC4钛合金电弧增材制造叠层组织特征[J]. 焊接学报, 2018, 39(12): 37-43. DOI: 10.12073/j.hjxb.2018390294
LI Lei, YU Zhishui, ZHANG Peilei, ZHUANG Qiaoqiao, NIE Yunpeng. Microstructural characteristics of wire and arc additive layer manufacturing of TC4 components[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 37-43. DOI: 10.12073/j.hjxb.2018390294
Citation: LI Lei, YU Zhishui, ZHANG Peilei, ZHUANG Qiaoqiao, NIE Yunpeng. Microstructural characteristics of wire and arc additive layer manufacturing of TC4 components[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 37-43. DOI: 10.12073/j.hjxb.2018390294

TC4钛合金电弧增材制造叠层组织特征

Microstructural characteristics of wire and arc additive layer manufacturing of TC4 components

  • 摘要: 采用CMT电弧增材制造技术制造了TC4钛合金薄壁墙构件,并对其组织特征进行了研究. 结果表明,在电弧增材制造过程中,受其热输入、多次热循环及冷却速度的影响,在其构件中产生了从高温保留下来的贯穿数个堆积层的原始β柱状晶晶界、水平层带条纹、马氏体组织和网篮组织等. 显微硬度显示,中下部区域硬度相对较高,平均硬度为336HV 0.1,上部显微硬度有明显降低,平均硬度为323.3HV 0.1.
    Abstract: Wire and arc additive layer manufacturing (WAALM) is a novel manufacturing technique in which metal components can be fabricated layer by layer. In this study, microstructural characteristics of TC4 components after CMT-WAALM deposition were investigated. During arc additive manufacturing process, epitaxial growth of prior columnar β-grain boundaries that were from the high temperature, horizontal stripes, martensite and basket weave microstructures formed due to the heat input, multi heat cycles and cooling rates. The microhardness values at the middle and bottom regions (about 336 HV0.1) were higher, while those at the top regions were significantly decreased (about 323.3 HV0.1).
  • [1] Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309 ? 320.
    [2] Donachie M J. Titanium: A Technical Guide, 2nd edition ASM Internation[M]. New York: Materials Park, OH, 2000.
    [3] Gu D D, Meiners W, Wissenbach K, et al. Laseradditive manufacturing of metallic components: materials, processes and mechanisms[J]. Internation Materials Reviews, 2013, 57(3): 133 ? 164.
    [4] Lin Jianjun, Lü Yaohui, Liu Yuxin, et al. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 69: 19 ? 29.
    [5] Wang F, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44(2): 968 ? 977.
    [6] 张 萍, 刘德波, 柏久阳, 等. 电弧增材制造的沉积态TC4钛合金薄壁零件组织特征[J]. 焊接, 2015(11): 53 ? 56
    Zhang Ping, Liu Debo, Bai Jiuyang, et al. Microstructure of TC4 titanium alloy thin - wall fabricated by wire and arc additive layer manufacturing[J]. Welding & Joining, 2015(11): 53 ? 56
    [7] 刘奋成, 贺立华, 林 鑫, 等. 电弧沉积制造TC4钛合金的组织和力学性能研究[J]. 热加工工艺, 2014(10): 1 ? 5
    Liu Fencheng, He Lihua, Lin Xin, et al. Study on microstructure and mechanical properties of arc deposition manufactured TC4 titanium alloy[J]. Hot Working Technology, 2014(10): 1 ? 5
    [8] 黄卫东, 林 鑫, 陈 静, 等. 激光立体成形 [M]. 西安: 西北工业大学出版社, 2007.
    [9] Almeida P M S, Williams S. Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer (CMT)[C]// Proccedings of the International Solid Freeform Fabrication Symposium, 2010: 25-36.
    [10] 刘 宁. TC4钛合金TIG填丝堆焊成型技术研究[D]. 哈尔滨:哈尔滨工业大学, 2013.
    [11] Brandl E, Palm F, Michailov V, et al. Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire[J]. Materials & Design, 2011, 32(10): 4665 ? 4675.
    [12] 柳 军, 郭小辉, 何 刚, 等. CMT焊接技术在钛合金方面的应用研究[J]. 材料开发与应用, 2013(4): 60 ? 64
    Liu Jun, Guo Xiaohui, He Gang, et al. Application of CMT welding in titanium alloy[J]. Development and Application of Materials, 2013(4): 60 ? 64
    [13] 张 翥, 王群骄, 莫 畏. 钛的金属学和热处理[M]. 北京: 冶金工业出版社, 2009.
    [14] 莱茵斯, 皮特尔斯. 钛与钛合金[M]. 陈振华, 泽. 北京: 化学工业出版社, 2005.
  • 期刊类型引用(3)

    1. 王颖,高胜,戴哲. 基于CNN-Transformer混合网络的焊缝激光条纹分割. 中国激光. 2024(24): 113-124 . 百度学术
    2. 乐猛,张华,叶艳辉,尚志军,赵琪. 膜式壁焊缝图像处理及其识别方法. 热加工工艺. 2021(01): 107-111 . 百度学术
    3. 张世宽,吴清潇,林智远. 焊缝图像中结构光条纹的检测与分割. 光学学报. 2021(05): 88-96 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  698
  • HTML全文浏览量:  24
  • PDF下载量:  5
  • 被引次数: 4
出版历程
  • 收稿日期:  2017-06-17

目录

    /

    返回文章
    返回