[1] |
Yin L, Borgesen P. On the root cause of kirkendall voiding in Cu3Sn[J]. Journal of Materials Research, 2011, 26(3): 455 ? 466.
|
[2] |
Kim J Y, Yu J, Kim S H. Effects of sulfide-forming element additions on the kirkendall void formation and drop impact reliability of Cu/Sn-3.5Ag solder joints[J]. Acta Materialia, 2009, 57(17): 5001 ? 5012.
|
[3] |
杨 扬, 陆 皓, 余 春, 等. 锌对SnxZn/Cu界面微空洞的影响[J]. 焊接学报, 2013, 34(1): 53 ? 56 Yang Yang, Lu Hao, Yu Chun, et al. Effect of Zn on formation of voids on Snx Zn/Cu interface[J]. Transactions of the China Welding Institution, 2013, 34(1): 53 ? 56
|
[4] |
Bhedwar H C, Ray K K, Kulkarni S D, et al. Kirkendall effect studies in copper-tin diffusion couples[J]. Scripta Metallurgica, 1972, 6(10): 919 ? 922.
|
[5] |
Onishi M, Fujibuchi H. Reaction-diffusion in the Cu-Sn system[J]. Transactions of the Japan Institute of Metals, 1975, 16(9): 539 ? 547.
|
[6] |
Tu K N, Thompson R D. Kinetics of interfacial reaction in bimetallic Cu Sn thin films[J]. Acta Metallurgica, 1982, 30(5): 947 ? 952.
|
[7] |
Oikawa H, Hosoi A. Interdiffusion in Cu Sn solid solutions. confirmation of anomalously large kirkendall effect[J]. Scripta Metallurgica, 1975, 9(8): 823 ? 828.
|
[8] |
Hoshino K, Iijima Y, Hirano K. Interdiffusion and kirkendall effect in Cu-Sn alloys[J]. Transactions of the Japan Institute of Metals, 1980, 21(10): 674 ? 682.
|
[9] |
杨 扬. Sn基钎料/Cu界面柯肯达尔空洞机理研究[D]. 上海: 上海交通大学, 2012.
|
[10] |
Baskes M I. Modified embedded-atom potentials for cubic materials and impurities[J]. Physical Review B, 1992, 46(5): 2727 ? 2742.
|
[11] |
Cheng H C, Yu C F, Chen W H. Strain-and strain-rate-dependent mechanical properties and behaviors of Cu3Sn compound using molecular dynamics simulation[J]. Journal of Materials Science, 2012, 47(7): 3103 ? 3114.
|
[12] |
Pankratov O, Huang H, Tomas DDLR, et al. As-vacancy interaction and ring mechanism of diffusion in Si[J]. Physical Review B, 1997, 56(20): 13172 ? 13176.
|
[13] |
Kushima A, Parfitt D, Chroneos A, et al. Interstitialcy diffusion of oxygen in tetragonal La2CoO4+δ[J]. Physical Chemistry Chemical Physics, 2011, 13(6): 2242 ? 2249.
|
[14] |
Zhang J, Song X, Zhang X, et al. The properties and structures of the mono-and the di-vacancy in Cu crystal[J]. Journal of Physics and Chemistry of Solids, 2006, 67(4): 714 ? 719.
|
[15] |
Shang P J, Liu Z Q, Pang X Y, et al. Growth mechanisms of Cu3Sn on polycrystalline and single crystalline Cu substrates[J]. Acta Materialia, 2009, 57(16): 4697 ? 4706.
|
[16] |
Wang Y W, Lin Y W, Kao C R. Inhibiting the formation of microvoids in Cu3Sn by additions of Cu to solders[J]. Journal of Alloys and Compounds, 2010, 493(1): 233 ? 239.
|
[17] |
Akbarzadeh A R, Chen Z Z, Kioussis N. Crucial role of surface in stability and mobility of vacancy clusters in metals[J]. Physical Review B, 2009, 79(19).
|
[18] |
Yuan X J, Chen N X, Shen J, et al. Embedded-atom-method interatomic potentials from lattice inversion[J]. Journal of Physics: Condensed Matter, 2010, 22(37): 375503.
|
[19] |
Gao F, Qu J. Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations[J]. Materials Letters, 2012, 73: 92 ? 94.
|