高级检索

空位对Cu/Sn无铅焊点界面元素扩散的影响

李扬,李晓延,姚鹏

李扬,李晓延,姚鹏. 空位对Cu/Sn无铅焊点界面元素扩散的影响[J]. 焊接学报, 2018, 39(12): 25-30. DOI: 10.12073/j.hjxb.2018390292
引用本文: 李扬,李晓延,姚鹏. 空位对Cu/Sn无铅焊点界面元素扩散的影响[J]. 焊接学报, 2018, 39(12): 25-30. DOI: 10.12073/j.hjxb.2018390292
LI Yang, LI Xiaoyan, YAO Peng. Effect of vacancy on the elements diffusion in Cu/Sn lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 25-30. DOI: 10.12073/j.hjxb.2018390292
Citation: LI Yang, LI Xiaoyan, YAO Peng. Effect of vacancy on the elements diffusion in Cu/Sn lead-free solder joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 25-30. DOI: 10.12073/j.hjxb.2018390292

空位对Cu/Sn无铅焊点界面元素扩散的影响

Effect of vacancy on the elements diffusion in Cu/Sn lead-free solder joints

  • 摘要: 界面柯肯达尔空洞形成的过程伴随着空位的形成与扩散,对空位行为的研究有利于深入理解界面扩散和空洞形成过程. 运用分子动力学方法模拟Cu/Cu3Sn界面上空位对扩散的影响,计算空位形成能、扩散势垒及空位扩散激活能. 结果表明,相同条件下含空位的模型发生扩散的几率要高于不含空位的模型. 另外,计算表明铜晶体的空位形成能大于Cu3Sn晶体中铜空位的形成能;Cu3Sn晶格中不同晶位的Cu空位(Cu1空位和Cu2空位)的形成能比较接近,但均小于锡的空位形成能. 此外,对Cu/Cu3Sn界面的空位扩散势垒及空位扩散激活能的计算结果表明,Sn原子的空位扩散激活能高于Cu原子.
    Abstract: The formation process of interface Kirkendall voids is accompanied by the formation and diffusion of vacancies, so the behavior can not be ignored during interfacial diffusion and void formation process. In this study, the diffusion process of Cu-Sn interface and the effect of vacancies on diffusion in Cu/Cu3 interface were investigated using molecular dynamics simulation. Moreover, the diffusion behaviors of atoms were analyzed, while the vacancy formation energy, diffusion energy barrier and vacancy diffusion activation energy were obtained. By comparison, it was found that the models containing vacancies more easily formed diffusion than the models without vacancies. In addition, the formation energy of Cu vacancy in the Cu crystal was greater than that in Cu3Sn crystal. The formation energies of Cu1 vacancy and Cu2 vacancy were close to each other in Cu3Sn crystal, and they were both smaller than the formation energy of Sn vacancy. Furthermore, the vacancy diffusion barrier and vacancy diffusion activation energy of the Cu/Cu3Sn interface were calculated. The results showed that the vacancy diffusion activation energy of Sn was higher than that of Cu.
  • [1] Yin L, Borgesen P. On the root cause of kirkendall voiding in Cu3Sn[J]. Journal of Materials Research, 2011, 26(3): 455 ? 466.
    [2] Kim J Y, Yu J, Kim S H. Effects of sulfide-forming element additions on the kirkendall void formation and drop impact reliability of Cu/Sn-3.5Ag solder joints[J]. Acta Materialia, 2009, 57(17): 5001 ? 5012.
    [3] 杨 扬, 陆 皓, 余 春, 等. 锌对SnxZn/Cu界面微空洞的影响[J]. 焊接学报, 2013, 34(1): 53 ? 56
    Yang Yang, Lu Hao, Yu Chun, et al. Effect of Zn on formation of voids on Snx Zn/Cu interface[J]. Transactions of the China Welding Institution, 2013, 34(1): 53 ? 56
    [4] Bhedwar H C, Ray K K, Kulkarni S D, et al. Kirkendall effect studies in copper-tin diffusion couples[J]. Scripta Metallurgica, 1972, 6(10): 919 ? 922.
    [5] Onishi M, Fujibuchi H. Reaction-diffusion in the Cu-Sn system[J]. Transactions of the Japan Institute of Metals, 1975, 16(9): 539 ? 547.
    [6] Tu K N, Thompson R D. Kinetics of interfacial reaction in bimetallic Cu Sn thin films[J]. Acta Metallurgica, 1982, 30(5): 947 ? 952.
    [7] Oikawa H, Hosoi A. Interdiffusion in Cu Sn solid solutions. confirmation of anomalously large kirkendall effect[J]. Scripta Metallurgica, 1975, 9(8): 823 ? 828.
    [8] Hoshino K, Iijima Y, Hirano K. Interdiffusion and kirkendall effect in Cu-Sn alloys[J]. Transactions of the Japan Institute of Metals, 1980, 21(10): 674 ? 682.
    [9] 杨 扬. Sn基钎料/Cu界面柯肯达尔空洞机理研究[D]. 上海: 上海交通大学, 2012.
    [10] Baskes M I. Modified embedded-atom potentials for cubic materials and impurities[J]. Physical Review B, 1992, 46(5): 2727 ? 2742.
    [11] Cheng H C, Yu C F, Chen W H. Strain-and strain-rate-dependent mechanical properties and behaviors of Cu3Sn compound using molecular dynamics simulation[J]. Journal of Materials Science, 2012, 47(7): 3103 ? 3114.
    [12] Pankratov O, Huang H, Tomas DDLR, et al. As-vacancy interaction and ring mechanism of diffusion in Si[J]. Physical Review B, 1997, 56(20): 13172 ? 13176.
    [13] Kushima A, Parfitt D, Chroneos A, et al. Interstitialcy diffusion of oxygen in tetragonal La2CoO4+δ[J]. Physical Chemistry Chemical Physics, 2011, 13(6): 2242 ? 2249.
    [14] Zhang J, Song X, Zhang X, et al. The properties and structures of the mono-and the di-vacancy in Cu crystal[J]. Journal of Physics and Chemistry of Solids, 2006, 67(4): 714 ? 719.
    [15] Shang P J, Liu Z Q, Pang X Y, et al. Growth mechanisms of Cu3Sn on polycrystalline and single crystalline Cu substrates[J]. Acta Materialia, 2009, 57(16): 4697 ? 4706.
    [16] Wang Y W, Lin Y W, Kao C R. Inhibiting the formation of microvoids in Cu3Sn by additions of Cu to solders[J]. Journal of Alloys and Compounds, 2010, 493(1): 233 ? 239.
    [17] Akbarzadeh A R, Chen Z Z, Kioussis N. Crucial role of surface in stability and mobility of vacancy clusters in metals[J]. Physical Review B, 2009, 79(19).
    [18] Yuan X J, Chen N X, Shen J, et al. Embedded-atom-method interatomic potentials from lattice inversion[J]. Journal of Physics: Condensed Matter, 2010, 22(37): 375503.
    [19] Gao F, Qu J. Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations[J]. Materials Letters, 2012, 73: 92 ? 94.
  • 期刊类型引用(3)

    1. 田晓羽,张志伟,周晨,赵连清,田洋光,付伟,宋晓国. 钎焊温度对BNi-2非晶钎料钎焊1Cr18Ni9Ti不锈钢组织和性能的影响. 焊接学报. 2024(06): 61-67 . 本站查看
    2. 李姗珊,李晓延,张伟栋,杨刚力,张虎. 不同取向Cu/Cu_3Sn界面处原子扩散行为的分子动力学模拟. 电子元件与材料. 2023(04): 467-475 . 百度学术
    3. 任二花,李晓延,张虎,韩旭. 空位对Cu/Sn焊点中Cu_3Sn层元素扩散的影响. 电子元件与材料. 2022(04): 381-386 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  560
  • HTML全文浏览量:  16
  • PDF下载量:  11
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-07-02

目录

    /

    返回文章
    返回