[1] |
郝文魁, 刘智勇, 王显宗, 等. 海洋平台用高强钢强度及其耐蚀性现状及发展趋势[J]. 装备环境工程, 2014, 11(2): 50 ? 58 Hao Wenkui, Liu Zhiyong, Wang Xianzong, et al. Current situation and prospect of studies on strength and corrosion resistance of high strength steel for ocean platform[J]. Equipment Enviromental Engineering, 2014, 11(2): 50 ? 58
|
[2] |
Jesus A M P D, Rui M, Fontoura B F C, et al. A comparison of the fatigue behavior between S355 and S690 steel grades[J]. Journal of Constructional Steel Research, 2012(79): 140 ? 150.
|
[3] |
王 恒, 苏波泳, 花国然, 等. 海洋工程装备材料E690高强钢腐蚀疲劳裂纹扩展实验研究[J]. 热加工工艺, 2016(16): 48 ? 51 Wang Heng, Su Boyong, Hua Guoran, et al. Experiment research on corrosion fatigue crack propagation of marine engineering equipment material E690 high strength steel[J]. Hot Working Technology, 2016(16): 48 ? 51
|
[4] |
Gupta M, Alderliesten R C, Benedictus R. A review of T -stress and its effects in fracture mechanics[J]. Engineering Fracture Mechanics, 2015, 134: 218 ? 241.
|
[5] |
Varfolomeev I, Luke M, Burdack M. Effect of specimen geometry on fatigue crack growth rates for the railway axle material EA4T[J]. Engineering Fracture Mechanics, 2011, 78(5): 742 ? 753.
|
[6] |
Yang J, Wang G Z, Xuan F Z, et al. An experimental investigation of in-plane constraint effect on local fracture resistance of a dissimilar metal welded joint[J]. Materials & Design, 2014, 53(1): 611 ? 619.
|
[7] |
Yang J, Wang G Z, Xuan F Z, et al. Out-of-plane constraint effect on local fracture resistance of a dissimilar metal welded joint[J]. Materials & Design, 2014, 55(1): 542 ? 550.
|
[8] |
Chen T, Nutter J, Hawk J, et al. Corrosion fatigue crack growth behavior of oil-grade nickel-base alloy 718. Part 1: Effect of corrosive environment[J]. Corrosion Science, 2014, 89: 146 ? 153.
|
[9] |
Ma H, Liu Z, Du C, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater[J]. Materials Science & Engineering A, 2015, 642: 22 ? 31.
|
[10] |
Donahue J R, Burns J T. Effect of chloride concentration on the corrosion–fatigue crack behavior of an age-hardenable martensitic stainless steel[J]. International Journal of Fatigue, 2016, 91: 79 ? 99.
|
[11] |
Turnbull A. Modeling of the chemistry and electrochemistry in cracksA review[J]. Electroanalysis, 2001, 57(2): 4.
|
[12] |
Ma H, Liu Z, Du C, et al. Comparative study of the SCC behavior of E690 steel and simulated HAZ microstructures in a SO2-polluted marine atmosphere[J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2015, 650: 93 ? 101.
|
[13] |
Chowdhury M S, Song C, Gao W. Highly accurate solutions and Padé approximants of the stress intensity factors and T-stress for standard specimens[J]. Engineering Fracture Mechanics, 2015, 144: 46 ? 67.
|
[14] |
Kujawski D. Environmental crack growth behavior affected by thickness/geometry constraint[J]. Metallurgical and Materials Transactions A, 2013, 44(3): 1340 ? 1352.
|
[15] |
Gu B, Luo J, Mao X. Hydrogen-facilitated anodic dissolution-type stress corrosion cracking of pipeline steels in near-beutral pH solution[J]. Corrosion -Houston Tx-, 1999, 55(1): 96 ? 108.
|