高级检索

超声辅助搅拌摩擦焊温度场及残余应力场分析

任朝晖,李存旭,谢吉祥,陈晓建

任朝晖,李存旭,谢吉祥,陈晓建. 超声辅助搅拌摩擦焊温度场及残余应力场分析[J]. 焊接学报, 2018, 39(11): 53-57. DOI: 10.12073/j.hjxb.2018390272
引用本文: 任朝晖,李存旭,谢吉祥,陈晓建. 超声辅助搅拌摩擦焊温度场及残余应力场分析[J]. 焊接学报, 2018, 39(11): 53-57. DOI: 10.12073/j.hjxb.2018390272
REN Zhaohui, LI Cunxu, XIE Jixiang, CHEN Xiaojian. Analysis on temperature field and residual stress field of ultrasonic assisted friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 53-57. DOI: 10.12073/j.hjxb.2018390272
Citation: REN Zhaohui, LI Cunxu, XIE Jixiang, CHEN Xiaojian. Analysis on temperature field and residual stress field of ultrasonic assisted friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 53-57. DOI: 10.12073/j.hjxb.2018390272

超声辅助搅拌摩擦焊温度场及残余应力场分析

Analysis on temperature field and residual stress field of ultrasonic assisted friction stir welding

  • 摘要: 超声辅助搅拌摩擦焊是一项在搅拌摩擦焊的搅拌头上添加轴向高频振动的新技术. 以6 mm厚7075铝合金材料为研究对象,建立了超声辅助搅拌摩擦焊与普通搅拌摩擦焊接的热源模型,通过ANSYS软件研究了轴向振动对焊接过程温度场以及焊后残余应力的影响规律. 结果表明,轴向振动的添加能够增大热输入量,提高焊接峰值温度且降低焊缝残余应力;在相同转速及焊接速度下,当振动频率一定时,焊接峰值温度和焊后残余应力随着振动幅值的增加而增大;当振动幅值一定时,随着振动频率的增大,焊接峰值温度及焊后残余应力也相应增加.
    Abstract: Ultrasonic assisted friction stir welding (UAFSW) is a new technology of adding axial high frequency vibration on the mixing head of friction stir welding (FSW). The 7075 aluminum alloy with 6 mm thickness was used as the research object, and the heat source model of UAFSW and FSW was established, the influence of axial vibration on the temperature field and residual stress was investigated by ANSYS software. The results show that the addition of axial vibration can increase the heat input, increase the peak welding temperature and reduce the residual stress of the weld. When the vibration frequency is constant, the peak welding temperature and residual stress increase with the increase of vibration amplitude at the same rotating speed and welding speed.When the vibration amplitude is constant, with the increase of vibration frequency, the welding peak temperature and residual stress also increase correspondingly.
  • [1] ?Thomas W M. Friction stir butt welding: United States, PCT/GB92/0220[P]. 1991-02-20.
    [2] Chen G, Feng Z, Zhu Y, et al. An alternative frictional boundary condition for computational fluid dynamics simulation of friction stir welding[J]. Journal of Materials Engineering & Performance, 2016, 25(9): 4016 ? 4023.
    [3] 李 迎, 叶春利, 魏 翀, 等. 铝合金搅拌摩擦焊材料流场非对称性的数值模拟研究[J]. 焊接技术, 2018, 47(6): 15 ? 20
    Li Ying, Ye Chunli, Wei Chong, et al. Numerical simulation of flow field asymmetry of friction stir welding of aluminum alloy[J]. Welding Technology, 2018, 47(6): 15 ? 20
    [4] 高恩志,尹治利,刘冰洋. 基于计算流体力学的搅拌摩擦焊数值模拟[J]. 沈阳航空航天大学学报, 2016, 33(6): 49 ? 53
    Gao Enzhi, Yin Zhili, Liu Bingyang. Numerical simulation of friction stir welding based on computational fluid dynamics[J]. Journal of Shenyang Aerospace University, 2016, 33(6): 49 ? 53
    [5] 相 倩, 吕念春, 薛 鹏, 等. 铝–钢异种金属搅拌摩擦焊研究现状及展望[J]. 机械工程学报, 2017, 53(20): 28 ? 37
    Xiang Qian, Lü Nianchun, Xue Peng, et al. Research status and prospects of aluminum-steel dissimilar metal friction stir welding[J]. Journal of Mechanical Engineering, 2017, 53(20): 28 ? 37
    [6] 贺地求, 梁建章. 超声搅拌焊接方法及其装置: 中国, 1836820[P]. 2006-09-27.
    [7] Alinaghian I, Honarpisheh M, Amini S. The influence of bending mode ultrasonic-assisted friction stir welding of Al-6061-T6 alloy on residual stress, welding force and macrostructure[J]. International Journal of Advanced Manufacturing Technology, 2017, 95(1): 1 ? 10.
    [8] Gao S, Wu C S, Padhy G K. Material flow, microstructure and mechanical properties of friction stir welded AA 2024-T3 enhanced by ultrasonic vibrations[J]. Journal of Manufacturing Processes, 2017, 30: 385 ? 395.
    [9] Schmidt H B, Hattel J H. Thermal modeling of friction stir welding[J]. Scripta Materialia, 2008, 58(5): 332 ? 37.
    [10] Neto D M, Neto P. Numerical modeling of friction stir welding process: a literature review[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65(1): 115 ? 26.
    [11] Fratini L, Buffa G, Shivpuri R. Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints[J]. Acta Materialia, 2010, 58(6): 2056 ? 2067.
    [12] 沈 洋. 搅拌摩擦焊温度场与残余应力场数值模拟[D]. 西安: 西安建筑科技大学, 2007.
  • 期刊类型引用(4)

    1. 赵瑞,方涛,程方杰. D-GTAW焊枪枪头的设计及工艺研究. 兵器材料科学与工程. 2019(03): 58-61 . 百度学术
    2. 王新鑫,迟露鑫,伍光凤,李春天,樊丁. Ar-O_2混合气体电弧的数值模拟. 物理学报. 2019(17): 261-270 . 百度学术
    3. 赵瑞,张淑华,方涛,程方杰. CO_2+Ar非熔化极双层气保护焊中CO_2影响的研究. 电焊机. 2018(09): 21-25 . 百度学术
    4. 李素苹,李春燕,李根. 2A14合金焊接熔池凝固界面的计算机模拟与验证. 铸造技术. 2017(07): 1734-1737 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  618
  • HTML全文浏览量:  12
  • PDF下载量:  4
  • 被引次数: 11
出版历程
  • 收稿日期:  2017-05-28

目录

    /

    返回文章
    返回