[1] |
孙清洁, 桑海波, 刘一搏, 等. 基于电弧增材制造的截面扫描轨迹规划[J]. 焊接学报, 2017, 38(10): 21 ? 24 Sun Qingjie, Sang Haibo, Liu Yibo, et al. Research on deposited layer scaning trace skanning based on rapid-prototpying using CMT technology[J]. Transactions of the China Welding Institution, 2017, 38(10): 21 ? 24
|
[2] |
王立伟, 陈树君, 肖 珺, 等. 熔滴主动靶向的激光间接电弧复合增材制造技术初探[J]. 焊接学报, 2017, 38(3): 71 ? 75 Wang Liwei, Chen Shujun, Xiao Jun, et al. Droplet-targeting laser hybrid indirect arc for additive manufacturing technology-A preliminary study[J]. Transactions of the China Welding Institution, 2017, 38(3): 71 ? 75
|
[3] |
柏久阳, 王计辉, 林三宝, 等. 铝合金电弧增材制造焊道宽度尺寸预测[J]. 焊接学报, 2015, 36(9): 87 ? 90 Bai Jiuyang, Wang Jihui, Lin Sanbao, et al. Width prediction of aluminium alloy weld additively manufactured by TIG arc[J]. Transactions of the China Welding Institution, 2015, 36(9): 87 ? 90
|
[4] |
Bartkowiaka K, Ullricha S, Frickb T, et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physics Procedia, 2011, 12(1): 393 ? 401.
|
[5] |
方浩博, 陈继民. 基于数字光处理技术的3D打印技术[J]. 北京工业大学学报, 2015, 41(12): 1775 ? 1782 Fang Haobo, Chen Jimin. 3D printing based on digital light processing technology[J]. Journal of Beijing University of Technology, 2015, 41(12): 1775 ? 1782
|
[6] |
何岷洪, 宋 坤, 莫宏斌, 等. 3D打印光敏树脂的研究进展[J]. 功能高分子学报, 2015, 28(1): 102 ? 108 He Minhong, Song Kun, Mo Hongbin, et al. Progress on photosensitive resins for 3D printing[J]. Journal of Functional Polymers, 2015, 28(1): 102 ? 108
|
[7] |
Balakrishnan N, Alejandro F, Eufracio A, et al. Characterization of magnetic particle alignment in photosensitive polymer resin: a preliminary study for additive manufacturing processes[J]. Additive Manufacturing, 2018, 22: 528 ? 536.
|
[8] |
宋熙煜, 闫 镔, 周利莉, 等. 3D打印技术在CT领域的应用[J]. CT理论与应用研究, 2015, 24(1): 57 ? 68 Song Xiyu, Yan Bin, Zhou Lili, et al. Application of 3D printing technology in the field of CT technology[J]. CT Theory and Applications, 2015, 24(1): 57 ? 68
|
[9] |
Yang Shiyan, Han Mingwu, Wang Qilong, et al. Development of a welding system for 3D steel rapid prototyping process[J]. China Welding, 2001, 10(1): 50 ? 56.
|
[10] |
Smith R J, Li W, Coulson J, et al. Spatially resolved acoustic spectroscopy for rapid imaging of material microstructure and grain orientation[J]. Measurement Science and Technology, 2014, 25(5): 1 ? 11.
|
[11] |
Smith R. J, Hirsch M, Patel R, et al. Spatially resolved acoustic spectroscopy for selective laser melting[J]. Journal of Materials Processing Technology, 2016, 236: 93 ? 102.
|
[12] |
Hirsch M, Catchpole-Smith S, Patel R, et al. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2017, 473(2205): 1 ? 11.
|
[13] |
敖 波, 王乃波, 何深远, 等. 小管路焊缝内部缺陷的三维X射线成像[J]. 焊接学报, 2016, 37(5): 11 ? 14 Ao Bo, Wang Naibo, He Shenyuan, et al. Three dimensional imaging of internal defects in small diameter pipe welding seam by X-ray microtomography[J]. Transactions of the China Welding Institution, 2016, 37(5): 11 ? 14
|
[14] |
马继明, 宋 岩, 王群书, 等. X射线CT环形伪影去除方法[J]. 强激光与粒子束, 2014, 26(12): 1 ? 6 Ma Jiming, Song Yan, Wang Qunshu, et al. Ring artifact correction for X-ray computed tomography[J]. High Power Laser and Particle Beams, 2014, 26(12): 1 ? 6
|