高级检索

TIG熔覆原位自生TiC-TiB2/Fe复合涂层

马宁,赵迪,张柯柯,杨跃,尹丹青

马宁,赵迪,张柯柯,杨跃,尹丹青. TIG熔覆原位自生TiC-TiB2/Fe复合涂层[J]. 焊接学报, 2018, 39(10): 124-128. DOI: 10.12073/j.hjxb.2018390261
引用本文: 马宁,赵迪,张柯柯,杨跃,尹丹青. TIG熔覆原位自生TiC-TiB2/Fe复合涂层[J]. 焊接学报, 2018, 39(10): 124-128. DOI: 10.12073/j.hjxb.2018390261
MA Ning, ZHAO Di, ZHANG Keke, YANG Yue, YIN Danqing. Microstructure and properties of in situ synthesized TiC-TiB2/Fe composite coatings by TIG cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 124-128. DOI: 10.12073/j.hjxb.2018390261
Citation: MA Ning, ZHAO Di, ZHANG Keke, YANG Yue, YIN Danqing. Microstructure and properties of in situ synthesized TiC-TiB2/Fe composite coatings by TIG cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 124-128. DOI: 10.12073/j.hjxb.2018390261

TIG熔覆原位自生TiC-TiB2/Fe复合涂层

Microstructure and properties of in situ synthesized TiC-TiB2/Fe composite coatings by TIG cladding

  • 摘要: 利用氩弧作为热源,以G302铁基合金粉、FeTi70粉和B4C粉作为原料粉末,在Q235表面原位生成TiC-TiB2增强的铁基复合涂层. 采用一系列的分析测试方法对涂层进行了表征,结果表明,氩弧熔覆过程冶金反应充分,熔覆层中生成了TiC,TiB2和M7C3等硬质增强相;熔覆层组织呈现出由母材界面到熔覆层表面硬质相逐渐增多的梯度分布特征. 增加FeTi70和B4C粉末比例提高了熔覆层硬度,质量比为G302:FeTi70:B4C=6:3:1时,试样最大硬度达到976 HV0.1,是母材硬度的5倍左右. 在与GCr15钢对磨时,熔覆试样磨损量仅为Q235钢的1/30左右,熔覆层磨损表面基本无塑性变形痕迹,涂层中坚硬的TiC,TiB2陶瓷相起到阻磨作用.
    Abstract: In this paper, in situ generated TiC-TiB2 reinforced Fe based composite coatings were prepared on the surface of Q235 steel using tungsten inert gas (TIG) cladding from G302 alloy powder, FeTi70 powder and B4C powder. The coatings were characterized by a series of testing methods. The results showed that the metallurgical reaction fully finished during the TIG cladding. The TiC, TiB2 and M7C3 reinforced phase generated in cladding layer. The microstructure presented gradient distribution characteristics with the hard phases increasing gradually from the interface between the parent metal and the cladding layer to the surface of cladding layer. The hardness of cladding layer increased with increasing the proportion of FeTi70 and B4C powders. When the mass ratio of G302: FeTi70: B4C =6:3:1, the maximum hardness of sample was 976 HV0.1, which was about 5 times of the parent metal hardness. The coatings showed great wear resistance when sliding with the GCr15 steel. The wear loss of the coatings was about 1/30 of the Q235 steel, and no plastic deformation traces were found on the wear surface of coatings. The hard ceramics phases in the coating, such as TiC and TiB2, played a wear resistance role.
  • [1] 魏建军, 潘 健, 黄智泉, 等. 耐磨堆焊材料在水泥工业的应用现状及发展前景[J]. 中国表面工程, 2009, 22(5): 7 ? 12
    Wei Jianjun, Pan Jian, Huang Zhiquan, et al. The applying actuality and developing foreground of hardfacing materials in cement lndustry[J]. China Surface Engineering, 2009, 22(5): 7 ? 12
    [2] 罗志海, 杨润泽, 潘传增. TiC-TiB2复合陶瓷制备及性能研究[J]. 陶瓷学报, 2011, 32(3): 353 ? 357
    Luo Zhihai, Yang Runze, Pan Chuanzeng. Preparation and properties of TiC-TiB2 composite ceramic[J]. Journal of Ceramics, 2011, 32(3): 353 ? 357
    [3] 曲振生, 赵忠民, 张 龙, 等. TiC-TiB2复合陶瓷制备的研究进展[J]. 材料导报, 2009, 23(17): 46 ? 51
    Qu Zhensheng, Zhao Zhongmin, Zhang Long, et al. Progress in research on preparation of TiC-TiB2 composite ceramics[J]. Materials Review, 2009, 23(17): 46 ? 51
    [4] 王振廷, 付长璟, 梁 刚, 等. 氩弧熔覆原位合成TiC-TiB2复合抗氧化涂层[J]. 焊接学报, 2016, 37(2): 103 ? 107
    Wang Zhenting, Fu Changjing, Liang Gang, et al. In-situ synthesis of TiC-TiB2 anti-oxidation composite layer by argon arc cladding[J]. Transactions of the China Welding Institution, 2016, 37(2): 103 ? 107
    [5] Yang Y F, Wang H Y, Liang Y H, et al. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2, particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting[J]. Materials Science & Engineering A, 2007, 445-446(6): 398 ? 404.
    [6] 李玉龙, 禹业晓. TIG堆焊技术研究进展[J]. 电焊机, 2012, 42(12): 70 ? 76
    Li Yulong, Yu Yexiao. Research and development of TIG deposition technology[J]. Electric Welding Machine, 2012, 42(12): 70 ? 76
    [7] 王新洪, 邹增大, 曲仕尧. 激光原位合成TiB2-TiC颗粒增强铁基涂层[J]. 焊接学报, 2012, 33(8): 25 ? 28
    Wang Xinhong, Zou Zengda, Qu Shiyao. Laser cladding of in-situ TiB2-TiC particles reinforced Fe-based coatings[J]. Transactions of the China Welding Institution, 2012, 33(8): 25 ? 28
    [8] 王永东, 刘 兴, 郑光海, 等. 氩弧熔覆原位自生TiC-TiB增强铁基复合涂层组织与性能[J]. 焊接学报, 2015, 36(8): 67 ? 70
    Wang Yongdong, Liu Xing, Zheng Guanghai, et al. Microstructure and properties of in-situ synthesized TiC-TiB reinforced Fe based composite coating by argon arc cladding[J]. Transactions of the China Welding Institution, 2015, 36(8): 67 ? 70
    [9] 孟凡玲, 张桂清, 苏允海. Fe-Cr-Ti-C系药芯焊丝熔覆层中硬质相生长模式[J]. 焊接学报, 2015, 36(3): 93 ? 96
    Meng Fanling, Zhang Guiqing, Su Yunhai. Growth model of hard phase in layer surfaced with Fe-Cr-Ti-C flux cored wire[J]. Transactions of the China Welding Institution, 2015, 36(3): 93 ? 96
    [10] 丁 天, 孟君晟, 乔盛楠, 等. 35CrMnSi表面氩弧熔覆原位自生TiC复合涂层的组织及耐磨性[J]. 表面技术, 2014, 43(5): 95 ? 99
    Ding Tian, Meng Junsheng, Qiao Shengnan, et al. Microstructure and wear resistance of TiC composite coating in situ synthesized on 35CrMnSi steel by argon arc cladding[J]. Surface Technology, 2014, 43(5): 95 ? 99
  • 期刊类型引用(7)

    1. 张普,曹四龙. Al_2O_3+TiO_2复合颗粒对激光熔覆Inconel 718基润滑涂层显微组织及高温磨损行为的影响研究. 材料保护. 2024(06): 8-19 . 百度学术
    2. 魏来,李丹,董振. 原位自生(Ti, V)C堆焊层的耐磨性能. 沈阳工业大学学报. 2023(01): 43-47 . 百度学术
    3. 刘海浪,卢儒学,陈健,徐珖韬,张倩. 镍基合金电子束熔覆表面改性及高温耐磨性研究. 金属热处理. 2021(04): 161-166 . 百度学术
    4. 吴雁楠,黄诗铭,朱平,马振一,兰博,何翰伟,郝博文. 原位碳化钛颗粒增强镍基喷焊层的组织与性能. 热加工工艺. 2021(22): 96-98+102 . 百度学术
    5. 马强,陈明宣,孟君晟,李成硕,史晓萍,彭欣. 纯铜表面氩弧熔覆TiB_2/Ni复合涂层组织及耐磨性能. 焊接学报. 2021(09): 90-96+102 . 本站查看
    6. 王永东,杨在林,张宇鹏,朱艳. Y_2O_3对原位自生TiC增强Ni基涂层组织和性能影响. 焊接学报. 2020(02): 53-57+100 . 本站查看
    7. 陈鹏涛,曹梅青,吕萧,仇楠楠. 氩弧熔敷原位合成ZrC-TiB_2增强铁基涂层的组织与性能. 上海金属. 2020(05): 15-20 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  409
  • HTML全文浏览量:  15
  • PDF下载量:  1
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-04-20

目录

    /

    返回文章
    返回