高级检索

2A14铝合金直流A-TIG焊接技术

张聃,尹玉环,孙耀华,吴伟,曲文卿

张聃,尹玉环,孙耀华,吴伟,曲文卿. 2A14铝合金直流A-TIG焊接技术[J]. 焊接学报, 2018, 39(10): 93-97. DOI: 10.12073/j.hjxb.2018390255
引用本文: 张聃,尹玉环,孙耀华,吴伟,曲文卿. 2A14铝合金直流A-TIG焊接技术[J]. 焊接学报, 2018, 39(10): 93-97. DOI: 10.12073/j.hjxb.2018390255
ZHANG Dan, YIN Yuhuan, SUN Yaohua, WU Wei, QU Wenqing. Analysis of direct current A-TIG welding of 2A14 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 93-97. DOI: 10.12073/j.hjxb.2018390255
Citation: ZHANG Dan, YIN Yuhuan, SUN Yaohua, WU Wei, QU Wenqing. Analysis of direct current A-TIG welding of 2A14 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 93-97. DOI: 10.12073/j.hjxb.2018390255

2A14铝合金直流A-TIG焊接技术

Analysis of direct current A-TIG welding of 2A14 aluminum alloy

  • 摘要: 依据某型号的铝合金焊接构件对焊后表面的高平面度要求,自主研制活性剂,实现2A14铝合金的直流A-TIG焊接. 并通过直流A-TIG焊缝的表面成形、X射线、微观组织观察及力学性能等方面开展2A14铝合金直流A-TIG焊接技术研究. 结果表明,当活性剂浓度为15%时可以获得表面成形、内部质量及力学性能良好的2A14铝合金直流A-TIG焊缝;与交流TIG焊相比,焊缝力学性能略高,微观气孔数量明显降低.
    Abstract: According to the high flatness requirement of a specific aluminum component, the direct current activating TIG welding (DC A-TIG) has been realized by using a self-developed activating flux. The appearance, internal qualities, microstructures and mechanical properties of the DC A-TIG welds have been studied. The results indicate that when the activating flux concentration is 15%, a 2A14 DC A-TIG weld with good appearance, internal quality and mechanical property can be obtained. Comparing to the alternating current TIG (AC TIG) welds, the mechanical properties of the DC A-TIG welds are a little higher and the number of the micro porosities decreases dramatically.
  • [1] 刘顺洪, 杜雯雯, 王任飞. A-TIG焊的研究现状和发展趋势[J]. 航空制造技术, 2010(9): 48 ? 50
    Liu Shunhong, Du Wenwen, Wang Renfei. Present situation and trend of research on A-TIG welding[J]. Aeronautical Manufacturing Technology, 2010(9): 48 ? 50
    [2] Zhang R H, Fan D. Numerical simulation of effects of activating flux on flow patterns and weld penetration in ATIG welding[J]. Science and Technology of Welding and Joining, 2007, 12(1): 15 ? 23.
    [3] 陈 俐, 胡伦骥, 巩水利. 活性剂焊接技术研究[J]. 热技工工艺技术与装备, 2005(4): 39 ? 41
    Chen Li, Hu Lunji, Gong Shuili. Research on welding with active flux[J]. Hot Mechanic Technology and Equipment, 2005(4): 39 ? 41
    [4] Howse D S, Lucas W. Investigation into arc constriction by active fluxes for tungstern inert gas welding[J]. Science and Technology of Welding and Joining, 2000, 5(3): 189 ? 193.
    [5] Fan C L, Yang C L, Liang Y C, et al. Optimality analysis of multiplex A-TIG welding flux for nickel-base superalloy[J]. China Welding, 2007, 16(2): 46 ? 50.
    [6] 刘凤尧, 林三宝, 杨春利, 等. TIG焊活性剂对焊缝成形的影响[J]. 焊接学报, 2002, 23(1): 1 ? 4
    Liu Fengyao, Lin Sanbao, Yang Chunli, et al. Effect of activating fluxes on weld form in TIG welding of stainless steel and titanium alloy[J]. Transactions of the China Welding Institution, 2002, 23(1): 1 ? 4
    [7] 熊亮同, 周志刚, 董占贵. TA15钛合金A-TIG焊实验分析[J]. 焊接学报, 2009, 30(4): 49 ? 52
    Xiong Liangtong, Zhou Zhigang, Dong Zhangui. Activating tungsten inert gas welding for TA15 tianium alloy[J]. Transactions of the China Welding Institution, 2009, 30(4): 49 ? 52
    [8] 黄 勇, 樊 丁, 樊清华. 表面活性剂对铝合金直流正接A-TIG焊熔深的影响[J]. 焊接学报, 2004, 25(5): 60 ? 62
    Huang Yong, Fan Ding, Fan Qinghua. Influence of surface activating fluxs on the penetration of aluminum alloy A-TIG welds[J]. Transactions of the China Welding Institution, 2004, 25(5): 60 ? 62
    [9] 张学军, 李 艳, 张文杨, 等. 铝合金活性焊剂研究[J]. 焊接, 2012(7): 38 ? 41
    Zhang Xuejun, Li Yan, Zhang Wenyang, et al. Study of active welding flux for aluminum alloy[J]. Welding & Joining, 2012(7): 38 ? 41
    [10] 晏丽琴, 徐宏彤, 余国宏. 新型活性TIG焊工艺研究[J]. 自动化与仪器仪表, 2014(2): 23 ? 27
    Yan Liqin, Xu Hongtong, Yu Guohong. Research of the new activating TIG welding process[J]. Automation & Instrumentation, 2014(2): 23 ? 27
    [11] 严 铿, 高莉华, 杨 刚, 等. 单组分活性剂对铝合金A-TIG焊焊缝的影响[J]. 焊接学报, 2013, 34(2): 54 ? 58
    Yan Keng, Gao Lihua, Yang Gang, et al. Effects of single-component activating flux on weld morphologies in A-TIG welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2013, 34(2): 54 ? 58
    [12] 尹玉环, 张 聃, 余 果, 等. 2219铝合金无气孔直流A-TIG焊接技术[J]. 焊接学报, 2017, 38(12): 61 ? 64
    Yin Yuhuan, Zhang Dan, Yu Guo, et al. Porosity free direct current A-TIG welding of 2219 aluminum alloy[J]. Transactions of the China Welding Institution, 2017, 38(12): 61 ? 64
  • 期刊类型引用(8)

    1. 赵宇辉,贺晨,赵吉宾,张宏伟. 激光-等离子弧复合沉积316L不锈钢的组织及性能. 热加工工艺. 2025(01): 109-113 . 百度学术
    2. 王克鸿,彭勇,段梦伟,章晓勇,黄勇,贺申,陈振文,郭顺,李晓鹏. 多维异质异构大型构件智能增材制造研究进展. 科学通报. 2024(17): 2401-2416 . 百度学术
    3. 张瑞英,薛龙,蒋凡. 工艺参数对立向分体等离子弧增材制造过程的影响. 焊接. 2024(07): 1-6 . 百度学术
    4. 黄佳欣,任香会,于振涛,韩善果. 基于响应面法的CMT增材成形. 材料热处理学报. 2023(03): 205-216 . 百度学术
    5. 周凡,顾介仁,王克鸿. 等离子弧增材交织结构的组织与力学性能. 焊接. 2023(01): 16-21 . 百度学术
    6. 沈磊,黄健康,刘光银,余淑荣,樊丁,宋闽. 等离子弧+交流辅助电弧增材制造钛合金微观组织与性能. 焊接学报. 2023(10): 57-63+136 . 本站查看
    7. 郭照灿,张德海,何文斌,杨光露,李军恒,付亮. 金属多材料增材制造研究现状与展望. 精密成形工程. 2022(02): 129-137 . 百度学术
    8. 郭洋,张建勋,熊建坤,刘艳,赵鹏飞. 电站设备转子轴颈等离子弧增材修复的组织与性能. 焊接学报. 2020(10): 47-53+100 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  277
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 16
出版历程
  • 收稿日期:  2017-04-15

目录

    /

    返回文章
    返回