[1] |
Katayama S, Kawahito Y. Elucidation of phenomena in high power fiber laser welding and development of prevention procedures of welding defects[C]// Proceedings of SPIE 2009, the International Society for Optical Engineering, 2009, 7195: 71951R.
|
[2] |
Li S, Chen G, Zhou C. Effects of welding parameters on weld geometry during high-power laser welding of thick plate[J]. International Journal of Advanced Manufacturing Technology, 2015, 79(1-4): 177 ? 182.
|
[3] |
尹 燕, 王占冲, 张瑞华, 等. 活性激光电弧复合焊接法研究[J]. 机械工程学报, 2014, 50(22): 63 ? 68 Yin Yan, Wang Zhanchong, Zhang Ruihua, et al. Research on activating laser arc hybrid welding[J]. Journal of Mechanical Engineering, 2014, 50(22): 63 ? 68
|
[4] |
尹 燕, 王占冲, 张瑞华, 等. 低碳钢激光预熔活性焊接法[J]. 焊接学报, 2014, 35(12): 39 ? 42 Yin Yan, Wang Zhanchong, Zhang Ruihua, et al. Study of laser pre-melting activating welding on low carbon steel[J]. Transactions of the China Welding Institution, 2014, 35(12): 39 ? 42
|
[5] |
刘万强, 李彦清, 刘凤德, 等. 活性剂对激光-电弧复合焊焊缝缺陷的影响[J]. 应用激光, 2016, 36(3): 311 ? 315 Liu Wanqiang, Li Yanqing, Liu Fengde, et al. Influence of surfactant on weld defects on laser - arc hybrid welding[J]. Applied Laser, 2016, 36(3): 311 ? 315
|
[6] |
Vidyarthy R S, Dwivedi D K. Activating flux tungsten inert gas welding for enhanced weld penetration[J]. Journal of Manufacturing Processes, 2016, 22: 211 ? 228.
|
[7] |
Singh B. Influence of flux composition on microstructure and oxygen content of low carbon steel weldments in submerged arc welding[J]. China Welding, 2018, 27(1): 10 ? 19.
|
[8] |
Ma L, Hu S, Hu B, et al. Activating flux design for laser welding of ferritic stainless steel[J]. Transactions of Tianjin University, 2014, 20(6): 429 ? 434.
|
[9] |
Wei H L, Pal S, Manvatkar V, et al. Asymmetry in steel welds with dissimilar amounts of sulfur[J]. Scripta Materialia, 2015, 108: 88 ? 91.
|
[10] |
Traidia A, Roger F, Schroeder J, et al. On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels[J]. Journal of Materials Processing Technology, 2013, 213(7): 1128 ? 1138.
|
[11] |
Mishra S, Lienert T J, Johnson M Q, et al. An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations[J]. Acta Materialia, 2008, 56: 2133 ? 2146.
|
[12] |
Zhao Y, Lei Y, Shi Y. Effects of surface-active elements sulfur on flow patterns of welding pool[J]. Journal of Materials Science & Technology, 2005, 21(3): 408 ? 414.
|
[13] |
Han S W, Cho W I, Na S J, et al. Influence of driving forces on weld pool dynamics in GTA and laser welding[J]. Welding in the World, 2013, 57(2): 257 ? 264.
|
[14] |
Cho W I, Na S J, Thomy C, et al. Numerical simulation of molten pool dynamics in high power disk laser welding[J]. Journal of Materials Processing Technology, 2012, 212(1): 262 ? 275.
|
[15] |
Tan Y T, Wijesinghe T L S L, Ng G K L, et al. Investigation into the influence of laser melting on the sulphide inclusions in AISI 416 stainless steel[J]. Corrosion Science, 2011, 53(12): 3950 ? 3955.
|
[16] |
Li S, Deng Z, Deng H, et al. Microstructure and properties of weld joint during 10 kW laser welding with surface-active element sulfur[J]. Applied Surface Science, 2017, 426: 704 ? 713.
|
[17] |
Myllykoski L, Suutala N. Effect of solidification mode on hot ductility of austenitic stainless steel[J]. Metals Technology, 1983, 10(1): 453 ? 460.
|
[18] |
Shankar V, Gill T P S, Mannan S L, et al. Solidification cracking in austenitic stainless steel welds[J]. Sadhana, 2003, 28(3-4): 359 ? 382.
|