高级检索

活性硫对高功率激光焊接焊缝成形的影响

李时春,邓辉,肖罡,许伟

李时春,邓辉,肖罡,许伟. 活性硫对高功率激光焊接焊缝成形的影响[J]. 焊接学报, 2018, 39(10): 65-70. DOI: 10.12073/j.hjxb.2018390250
引用本文: 李时春,邓辉,肖罡,许伟. 活性硫对高功率激光焊接焊缝成形的影响[J]. 焊接学报, 2018, 39(10): 65-70. DOI: 10.12073/j.hjxb.2018390250
LI Shichun, DENG Hui, XIAO Gang, XU Wei. Effects of active sulfur powder on weld formation during high power laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 65-70. DOI: 10.12073/j.hjxb.2018390250
Citation: LI Shichun, DENG Hui, XIAO Gang, XU Wei. Effects of active sulfur powder on weld formation during high power laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 65-70. DOI: 10.12073/j.hjxb.2018390250

活性硫对高功率激光焊接焊缝成形的影响

Effects of active sulfur powder on weld formation during high power laser welding

  • 摘要: 文中试验研究了在万瓦级高功率光纤激光焊接厚板过程中添加表面活性硫粉对焊缝成形的影响及对焊缝微观组织的影响. 结果表明,表面活性硫粉的添加增加了熔池的浸润性和流动性从而形成了更长的焊接熔池. 负离焦焊接时,活性硫粉能增加焊缝熔深,且不受焊接速度的影响;而正离焦焊接时活性硫粉能增加焊缝熔宽. 高功率激光焊接过程能细化焊缝金相组织,且促使焊缝中铁素体比重增加;硫粉的添加则进一步促进了焊缝金相组织的细化及铁素体比重的增加.
    Abstract: The present work has been done to study the effects of surface-active sulfur powder on weld formation and weld microstructure during 10 kW-level high power fiber laser welding of thick plate. Observed results show that the surface-active sulfur powder increased the fluidity of molten metal and then the molten pool was elongated. When the defocused distance was negative, the active sulfur powder could increase the weld penetration and this influencing rule would not change under different welding speeds. When the defocused distance was positive, the active sulfur powder could increase the weld width. High power laser welding process could refine the grain size of weld and increase the ferrite proportion in weld. The added sulfur powder could refine the grain size and increase the ferrite proportion further.
  • [1] Katayama S, Kawahito Y. Elucidation of phenomena in high power fiber laser welding and development of prevention procedures of welding defects[C]// Proceedings of SPIE 2009, the International Society for Optical Engineering, 2009, 7195: 71951R.
    [2] Li S, Chen G, Zhou C. Effects of welding parameters on weld geometry during high-power laser welding of thick plate[J]. International Journal of Advanced Manufacturing Technology, 2015, 79(1-4): 177 ? 182.
    [3] 尹 燕, 王占冲, 张瑞华, 等. 活性激光电弧复合焊接法研究[J]. 机械工程学报, 2014, 50(22): 63 ? 68
    Yin Yan, Wang Zhanchong, Zhang Ruihua, et al. Research on activating laser arc hybrid welding[J]. Journal of Mechanical Engineering, 2014, 50(22): 63 ? 68
    [4] 尹 燕, 王占冲, 张瑞华, 等. 低碳钢激光预熔活性焊接法[J]. 焊接学报, 2014, 35(12): 39 ? 42
    Yin Yan, Wang Zhanchong, Zhang Ruihua, et al. Study of laser pre-melting activating welding on low carbon steel[J]. Transactions of the China Welding Institution, 2014, 35(12): 39 ? 42
    [5] 刘万强, 李彦清, 刘凤德, 等. 活性剂对激光-电弧复合焊焊缝缺陷的影响[J]. 应用激光, 2016, 36(3): 311 ? 315
    Liu Wanqiang, Li Yanqing, Liu Fengde, et al. Influence of surfactant on weld defects on laser - arc hybrid welding[J]. Applied Laser, 2016, 36(3): 311 ? 315
    [6] Vidyarthy R S, Dwivedi D K. Activating flux tungsten inert gas welding for enhanced weld penetration[J]. Journal of Manufacturing Processes, 2016, 22: 211 ? 228.
    [7] Singh B. Influence of flux composition on microstructure and oxygen content of low carbon steel weldments in submerged arc welding[J]. China Welding, 2018, 27(1): 10 ? 19.
    [8] Ma L, Hu S, Hu B, et al. Activating flux design for laser welding of ferritic stainless steel[J]. Transactions of Tianjin University, 2014, 20(6): 429 ? 434.
    [9] Wei H L, Pal S, Manvatkar V, et al. Asymmetry in steel welds with dissimilar amounts of sulfur[J]. Scripta Materialia, 2015, 108: 88 ? 91.
    [10] Traidia A, Roger F, Schroeder J, et al. On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels[J]. Journal of Materials Processing Technology, 2013, 213(7): 1128 ? 1138.
    [11] Mishra S, Lienert T J, Johnson M Q, et al. An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations[J]. Acta Materialia, 2008, 56: 2133 ? 2146.
    [12] Zhao Y, Lei Y, Shi Y. Effects of surface-active elements sulfur on flow patterns of welding pool[J]. Journal of Materials Science & Technology, 2005, 21(3): 408 ? 414.
    [13] Han S W, Cho W I, Na S J, et al. Influence of driving forces on weld pool dynamics in GTA and laser welding[J]. Welding in the World, 2013, 57(2): 257 ? 264.
    [14] Cho W I, Na S J, Thomy C, et al. Numerical simulation of molten pool dynamics in high power disk laser welding[J]. Journal of Materials Processing Technology, 2012, 212(1): 262 ? 275.
    [15] Tan Y T, Wijesinghe T L S L, Ng G K L, et al. Investigation into the influence of laser melting on the sulphide inclusions in AISI 416 stainless steel[J]. Corrosion Science, 2011, 53(12): 3950 ? 3955.
    [16] Li S, Deng Z, Deng H, et al. Microstructure and properties of weld joint during 10 kW laser welding with surface-active element sulfur[J]. Applied Surface Science, 2017, 426: 704 ? 713.
    [17] Myllykoski L, Suutala N. Effect of solidification mode on hot ductility of austenitic stainless steel[J]. Metals Technology, 1983, 10(1): 453 ? 460.
    [18] Shankar V, Gill T P S, Mannan S L, et al. Solidification cracking in austenitic stainless steel welds[J]. Sadhana, 2003, 28(3-4): 359 ? 382.
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  316
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 1
出版历程
  • 收稿日期:  2018-01-19

目录

    /

    返回文章
    返回