高级检索

亚共析钢搅拌摩擦加工组织与力学性能

王洪铎,王文,李霄,王快社

王洪铎,王文,李霄,王快社. 亚共析钢搅拌摩擦加工组织与力学性能[J]. 焊接学报, 2018, 39(10): 41-47. DOI: 10.12073/j.hjxb.2018390246
引用本文: 王洪铎,王文,李霄,王快社. 亚共析钢搅拌摩擦加工组织与力学性能[J]. 焊接学报, 2018, 39(10): 41-47. DOI: 10.12073/j.hjxb.2018390246
WANG Hongduo, WANG Wen, LI Xiao, WANG Kuaishe. Microstructure and mechanical properties of friction stir processed hypoeutectoid steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 41-47. DOI: 10.12073/j.hjxb.2018390246
Citation: WANG Hongduo, WANG Wen, LI Xiao, WANG Kuaishe. Microstructure and mechanical properties of friction stir processed hypoeutectoid steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 41-47. DOI: 10.12073/j.hjxb.2018390246

亚共析钢搅拌摩擦加工组织与力学性能

Microstructure and mechanical properties of friction stir processed hypoeutectoid steel

  • 摘要: 采用K40钨钴硬质合金搅拌头对3 mm厚热轧退火态亚共析钢板进行了搅拌摩擦加工,对加工区域的宏观形貌、微观组织及力学性能进行了分析.结果表明,搅拌区和热力影响区为先共析块状铁素体、“针状”铁素体及珠光体,组织转变受动态再结晶和相变共同作用,热影响区组织为等轴状铁素体和片层状珠光体.搅拌摩擦加工对各区域中珠光体及析出渗碳体的分布形态影响显著.搅拌摩擦加工后试样显微硬度明显增加,抗拉强度相比母材提高8.2%,断裂位置位于母材处,加工前后试样断裂形式均为微孔聚合韧性断裂.固溶强化与相变强化对硬度和抗拉强度的提高起主要作用.
    Abstract: The hot-rolled annealed hypoeutectoid steel plates with a thickness of 3 mm was processed by friction stir processing using K40 cobalt tungsten carbide tool. The microstructures and mechanical properties of the processed zone were investigated. The results show that the microstructure of stir zone and thermo-mechanically affected zone were proeutectoid blocky ferrite, "acicular ferrite" and pearlite. Its transformation characteristic was dynamic recrystallization and phase transformation. However, heat-affected zone was characterized as equiaxed ferrite and lamellar pearlite, which was mainly controlled by recrystallization. Friction stir processing had significant effect on the morphologies of pearlite and the precipitation cementite in above different zones. Microhardness in the processed zone of hypoeutectoid steel sample obviously increased after friction stir processing and its ultimate tensile strength increased by 8.2% compared to that of the base material. As a result, the fracture location of tensile specimens appeared at the base material. The fracture mechanism of samples before and after friction stir processing treatment was dimple ductile fracture. Solid solution strengthening and phase transformation strengthening were the two factors for improving the hardness and the ultimate tensile strength of hypoeuectoid steel sample.
  • [1] Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science & Engineering R Reports, 2005, 50(1): 1 ? 78.
    [2] 高 雪, 张 郑, 王快社, 等. 搅拌摩擦加工镁合金超塑性最新研究进展[J]. 材料导报, 2014, 28(5): 138 ? 142
    Gao Xue, Zhang Zheng, Wang Kuaishe, et al. The latest research progress of stirring friction processing on the superplastic magnesium alloy[J]. Materials Review, 2014, 28(5): 138 ? 142
    [3] Rai R, De A, Bhadeshia H K D H, et al. Review: friction stir welding tools[J]. Science & Technology of Welding & Joining, 2011, 16(4): 325 ? 342.
    [4] Grewal H S, Singh H, Agrawal A, et al. Friction stir processing of mild steel to enhance its surface hardness[J]. Advanced Materials Research, 2012, 620: 117 ? 121.
    [5] 王文英, 王 玉, 高大路, 等. 低碳钢Q235A搅拌摩擦焊接的接头金相组织分析[J]. 航天制造技术, 2005(5): 42 ? 44
    Wang Wenying, Wang Yu, Gao Dalu, et al. Analysis of metallographic structure for low carbon steel Q235A welded joints by friction stir welding[J]. Aerospace Manufacturing Technology, 2005(5): 42 ? 44
    [6] Jafarzadegan M, Abdollah-Zadeh A, Feng A H, et al. Microstructure and mechanical properties of a dissimilar friction stir weld between austenitic stainless steel and low carbon steel[J]. Journal of Materials Science Technology, 2013, 29(4): 367 ? 372.
    [7] 李 博. 基于搅拌摩擦焊技术的TC4钛合金表面改性研究[D]. 南京:南京航空航天大学, 2014.
    [8] 傅志红, 贺地求, 周鹏展, 等. 7A52铝合金搅拌摩擦焊焊缝的组织分析[J]. 焊接学报, 2006, 27(5): 65 ? 68
    Fu Zhihong, He Diqiu, Zhou Pengzhan, et al. Structure investigation of friction stir welding of 7A52 aluminum alloy t[J]. Transactions of the China Welding Institution, 2006, 27(5): 65 ? 68
    [9] Zhao Y H, Lin S B, Shen J J, et al. 3D visualization of the material flow in friction stir welding process[J]. China Welding, 2005, 14(2): 140 ? 144.
    [10] Lienert T J, Jr W L S, Grimmett B B, et al. Friction stir welding studies on mild steel[J]. Welding Journal, 2003, 29(7): 27 ? 40.
    [11] 刘礼华, 蔡 磊, 赵 敏, 等. “针状”先共析铁素体形成及对钢丝性能的影响[J]. 材料科学与工艺, 2005, 13(6): 659 ? 661
    Liu Lihua, Cai Lei, Zhao Min, et al. Formation of needle like proeutectiod ferrite and its influence on medium carbon steel wire properties[J]. Material Science and Technology, 2005, 13(6): 659 ? 661
    [12] 惠卫军, 田 鹏, 董 瀚, 等. 形变温度对中碳钢组织转变的影响[J]. 金属学报, 2005, 41(6): 611 ? 616
    Hui Weijun, Tian Peng, Dong Han, et al. Influence of deformation temperature on the microstructure transformation in medium carbon steel[J]. Acta Metallurgica Sinica, 2005, 41(6): 611 ? 616
    [13] Fujii H, Cui L, Nakata K, et al. Mechanical properties of friction stir welded carbon steel joints — friction stir welding with and without transformation[J]. Welding in the World, 2013, 52(9-10): 75 ? 81.
计量
  • 文章访问数:  299
  • HTML全文浏览量:  18
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-05

目录

    /

    返回文章
    返回