高级检索

基于视觉注意的V形焊接区域清晰图像获取

陈海永,任亚非,王亚男,曹军旗

陈海永,任亚非,王亚男,曹军旗. 基于视觉注意的V形焊接区域清晰图像获取[J]. 焊接学报, 2018, 39(9): 19-24,35. DOI: 10.12073/j.hjxb.2018390217
引用本文: 陈海永,任亚非,王亚男,曹军旗. 基于视觉注意的V形焊接区域清晰图像获取[J]. 焊接学报, 2018, 39(9): 19-24,35. DOI: 10.12073/j.hjxb.2018390217
CHEN Haiyong, REN Yafei, WANG Yanan, CAO Junqi. Clear image acquisition of V-shaped welding area based on visual attention[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(9): 19-24,35. DOI: 10.12073/j.hjxb.2018390217
Citation: CHEN Haiyong, REN Yafei, WANG Yanan, CAO Junqi. Clear image acquisition of V-shaped welding area based on visual attention[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(9): 19-24,35. DOI: 10.12073/j.hjxb.2018390217

基于视觉注意的V形焊接区域清晰图像获取

基金项目: 国家自然科学基金项目(No.61403119);河北省自然科学基金资助项目(No.F2018202078);河北省科技计划项目(17211804D);河北省青年拔尖人才(210003)

Clear image acquisition of V-shaped welding area based on visual attention

  • 摘要: 焊接过程中焊接区域亮度范围大,而且随机变化,导致采集的焊缝区域图像干扰大,特征难以提取.文中利用激光条纹良好的方向特性,以及图像中结构光与熔池的亮度特征,提出一种基于视觉注意的焊接区域清晰图像获取方法.针对采集的焊缝区域图像,首先获取在不同检测方向下结构光条纹的单方向特征图,再进行加权融合得到多方向特征图.其次,利用高通巴特沃斯滤波器对原始图像加强,获取亮度特征图.接着提出一种改进的显著性度量方法实现了显著性区域与复杂背景图像区域的较好分割.最后,通过图像融合归一化得出结构光与熔池的清晰图像,并采用聚类中心距离客观评价了图像显著性检测效果.结果表明,试验结果显示提出的方法是有效的.
    Abstract: In the welding process, the welding region has large brightness range and random variation, which result in great disturbance of the weld image and are difficult to extract features. In this paper, a method of obtaining clear image for welding area based on visual attention is proposed by using the directional characteristics of laser fringes and the brightness characteristics of structured light and molten pool in the image. Firstly a unidirectional feature map of structured light fringes under different detection directions is obtained for the weld area image, and the Multi-orientation feature map is obtained by weighted fusion. Secondly, the original image is enhanced by the high-pass Butterworth filter to obtain the intensity feature map. Then, an improved saliency measure method is proposed to realize the good segmentation between the salient region and the complex background image region. Finally, a clear image of structured light and molten pool is obtained by image fusion normalization, and the effect of image saliency detection is evaluated objectively by clustering center distance. The experimental results show that the proposed method is effective.
  • [1] 李原, 徐德, 沈扬, 等. 一种焊缝结构光图像处理与特征提取方法[J]. 焊接学报, 2006, 27(9):25-31 Li Yuan, Xu De, Shen Yang, et al. An image processing and feature extraction methods for structured light image of welding seam[J]. Transactions of the China Welding Institution, 2006, 27(9):25-31, doi: 10.3321/j.issn:0253-360X.2006.09.007
    [2] 邹怡蓉, 都东, 曾锦乐, 等. 基于多视觉特征获取与信息融合的焊道识别方法[J]. 焊接学报, 2013, 34(5):33-36 Zou Yirong, Du Dong, Zeng Jinle, et al. Visual method for weld seam recognition based on multi-feature extraction and information fusion[J]. Transactions of the China Welding Institution, 2013, 34(5):33-36
    [3] 林欣堂, 朱莉, 张海波. 多层多道焊接结构光中心线提取[J]. 焊接学报, 2016, 37(7):105-108 Lin Xintang, Zhu Li, Zhang Haibo. Extracting center of line structured light for multi-layer and multi-pass welding technology[J]. Transactions of the China Welding Institution, 2016, 37(7):105-108
    [4] 顾帆, 陈华斌, 何银水, 等. 基于激光视觉的多层多道焊接坡口特征点提取方法[J]. 上海交通大学学报, 2016(S1):62-65 Gu Fan, Chen Huabin, He Yinshui, et al. Method for extracting multi-pass welding groove feature point based on laser vision[J]. Journal of Shanghai Jiaotong University, 2016(S1):62-65
    [5] Fang Z, Xu D, Tan M. A Vision-based self-tuning fuzzy controller for fillet weld seam tracking[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(3):540-550. doi: 10.1109/TMECH.2010.2045766
    [6] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259. doi: 10.1109/34.730558
    [7] Harel J, Koch C, Perona P. Graph-based visual saliency[C]//Proceedings of the 19th International Conference on Advances inNeural Information Processing Systems, Vancouver, Canada, 2006:545-52.
    [8] 何银水, 孔萌, 陈华斌, 等. 基于视觉注意机制的机器人厚板焊接焊缝轮廓的识别[J]. 焊接学报, 2015, 36(12):51-55 He Yinshui, Kong Meng, Chen Huabin, et al. Weld seam profile identification based on visual attention mechanism in robotic thick-plate welding[J]. Transactions of the China Welding Institution, 2015, 36(12):51-55
    [9] He Y, Xu Y, Chen Y, et al. Weld seam profile detection and feature point extraction for multi-pass route planning based on visual attention model[J]. Robotics and Computer-Integrated Manufacturing, 2016, 37:251-261. doi: 10.1016/j.rcim.2015.04.005
    [10] 于明, 邳艳芹. 一种改进的显著性区域提取模型[J]. 电视技术, 2012, 36(19):167-169 Yu Ming, Pi Yanqin. Improved model of salient regions extraction[J]. Video Engineering, 2012, 36(19):167-169, doi: 10.3969/j.issn.1002-8692.2012.19.045
    [11] Xu Y, Lü N, Zhong J, et al. Research on the real-time tracking information of three-dimension welding seam in robotic GTAW process based on composite sensor technology[J]. Journal of Intelligent & Robotic Systems, 2012, 68(2):89-103.
  • 期刊类型引用(3)

    1. 王颖,高胜,戴哲. 基于CNN-Transformer混合网络的焊缝激光条纹分割. 中国激光. 2024(24): 113-124 . 百度学术
    2. 乐猛,张华,叶艳辉,尚志军,赵琪. 膜式壁焊缝图像处理及其识别方法. 热加工工艺. 2021(01): 107-111 . 百度学术
    3. 张世宽,吴清潇,林智远. 焊缝图像中结构光条纹的检测与分割. 光学学报. 2021(05): 88-96 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  684
  • HTML全文浏览量:  34
  • PDF下载量:  188
  • 被引次数: 4
出版历程
  • 收稿日期:  2017-04-05

目录

    /

    返回文章
    返回