高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国内外电子束熔丝沉积增材制造技术发展现状

陈国庆,树西,张秉刚,冯吉才

陈国庆,树西,张秉刚,冯吉才. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123-128. doi: 10.12073/j.hjxb.2018390214
引用本文: 陈国庆,树西,张秉刚,冯吉才. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123-128. doi: 10.12073/j.hjxb.2018390214
CHEN Guoqing, SHU Xi, ZHANG Binggang, FENG Jicai. State-of-arts of electron beam freeform fabrication technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 123-128. doi: 10.12073/j.hjxb.2018390214
Citation: CHEN Guoqing, SHU Xi, ZHANG Binggang, FENG Jicai. State-of-arts of electron beam freeform fabrication technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 123-128. doi: 10.12073/j.hjxb.2018390214

国内外电子束熔丝沉积增材制造技术发展现状

doi: 10.12073/j.hjxb.2018390214
基金项目: 国家自然科学基金资助项目(51774106)

State-of-arts of electron beam freeform fabrication technology

  • 摘要: 随着增材制造技术的不断发展,各种增材制造技术,如电弧增材制造、激光增材制造和电子束增材制造等,在其相应的领域内展开了广泛的研究.文中总结了电子束熔丝沉积增材制造技术的特点.重点介绍了国内外对电子束熔丝沉积技术开展的研究工作,简要介绍了国内外学者在电子束熔丝沉积技术设备和工艺方面取得的最新研究成果.分析了电子束熔丝沉积技术目前亟需展开的研究工作,并展望了该技术应向活泼难熔金属、复合材料、梯度材料制备与大型复杂构件的增材制造等方向发展.
  • [1] Gibson I, Rosen D W, Stucker B. Additive manufacturing technologies[M]. New York:Springer, 2010.
    [2] Kruth J P, Leu M C, Nakagawa T. Progress in additive manufacturing and rapid prototyping[J]. CIRP Annals-Manufacturing Technology, 1998, 47(2):525-540.
    [3] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4):1-4 Lu Bingheng, Li Dichen. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4):1-4
    [4] Almeida P S, Williams S. Innovative process model of Ti-6Al-4V additive layer manufacturing using cold metal transfer (CMT)[C]//Proceedings of the Twenty-first Annual International Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin, TX, USA. 2010:25-36
    [5] Kazanas P, Deherkar P, Almeida P, et al. Fabrication of geometrical features using wire and arc additive manufacture[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2012, 226(6):1042-1051.
    [6] 林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9):1111-1126 Lin Xin, Huang Weidong. Laser additive manufacturing of high-performance metal components[J]. Science China:Information Sciences, 2015, 45(9):1111-1126
    [7] Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9):3303-3312.
    [8] 黄瑜, 贾文鹏, 汤慧萍, 等. Ti600合金的电子束快速成形[J]. 稀有金属材料与工程, 2012, 41(11):2000-2004 Huang Yu, Jia Wenpeng, Tang Huiping, et al. Electronic beam melting of Ti600 titanium alloy[J]. Rare Metal Materials and Engineering, 2012, 41(11):2000-2004
    [9] 汤慧萍, 王建, 逯圣路, 等. 电子束选区熔化成形技术研究进展[J]. 中国材料进展, 2015, 34(3):225-235 Tang Huiping, Wang Jian, Lu Shenglu, et al. Research progress in selective electron beam melting[J]. Materials China, 2015, 34(3):225-235
    [10] 陈济轮, 杨洁, 于海静. 国外高能束增材制造技术应用现状与最新发展[J]. 航天制造技术, 2014(4):1-4, 10 Chen Jilun, Yang Jie, Yu Haijing. The abroad application and latest development of high-energy beam additive manufacturing technology[J]. Aerospace Manufacturing Technology, 2014(4):1-4, 10
    [11] 齐海波, 林峰, 颜永年, 等. 电子束在快速制造领域的应用[J]. 新技术新工艺, 2004(11):54-56 Qi Haibo, Lin Feng, Yan Yongnian, et al. The application of electron beam in rapid manufacturing[J]. New Technology & New Process, 2004(11):54-56
    [12] Watson J K, Taminger K M B, Hafley R A, et al. Development of a prototype low-voltage electron beam freeform fabrication system[C]//The 13th Solid Freeform Fabrication Symposium. Austin:2002.
    [13] Taminger K M B, Hafley R A, Dicus D L. Solid freeform fabrication:an enabling technology for future space missions[C]//Keynote Lecture For 2002 International Conference On Metal Powder Deposition For Rapid. Virginia. 2002.
    [14] 杨春利, 林三宝. 电弧焊基础[M]. 哈尔滨:哈尔滨工业大学出版社, 2003.
    [15] 刘春飞, 张益坤. 电子束焊接技术发展历史, 现状及展望(Ⅰ)[J]. 航天制造技术, 2003, 1:33-36 Liu Chunfei, Zhang Yikun. Development history, state-of-arts and prospect of electron beam welding technology(I)[J]. Aerospace Manufacturing Technology, 2003, 1:33-36
    [16] Stecker S, Lachenberg K W, Wang H, et al. Advanced electron beam free form fabrication methods & technology[J]. Session, 2006, 2:35-46.
    [17] 冯吉才, 王廷, 张秉刚, 等. 异种材料真空电子束焊接研究现状分析[J]. 焊接学报, 2009, 30(10):108-112 Feng Jicai, Wang Ting, Zhang Binggang, et al. Research status analysis of electron beam welding for joining of dissimilar materials[J]. Transactions of the China Welding Institution, 2009, 30(10):108-112
    [18] 陈哲源, 锁红波, 李晋炜. 电子束熔丝沉积快速制造成型技术与组织特征[J]. 航天制造技术, 2010(1):40-43 Chen Zheyuan, Suo Hongbo, Li Jinwei. The forming character of electron beam freeform fabrication[J]. Aerospace Manufacturing Technology, 2010(1):40-43
    [19] Taminger K M B, Hafley R A. Characterization of 2219 aluminum produced by electron beam freeform fabrication[C]//13th Solid Freeform Fabrication Symposium. Austin:2002.
    [20] Taminger K M B, Hafley R A. Electron beam freeform fabrication:a rapid metal deposition process[C]//3rd Annual Automotive Composites Conference. Virginia. 2003.
    [21] Taminger K M B, Hafley R A, Fahringer D T, et al. Effect of surface treatments on electron beam freeform fabricated aluminum structures[C]//Solid Freeform Fabrication Symposium Proceedings. 2004.
    [22] Taminger K M B, Hafley R A, Domack M S. Evolution and control of 2219 aluminium microstructural features through electron beam freeform fabrication[C]//Materials science forum, 2006, 519:1297-1302.
    [23] Taminger K M B, Hafley R A. Electron Beam Freeform Fabrication in the Space Environment[C]//45th AIAA Aerospace Sciences Meeting And Exhibit. Reno. 2007.
    [24] Wanjara P, Brochu M, Jahazi M. Electron beam freeforming of stainless steel using solid wire feed[J]. Materials & Design, 2007, 28(8):2278-2286.
    [25] Wanjara P, Brochu M, Girard S, et al. Electron beam freeforming on type 321 stainless steel using BNi-2 brazing paste[J]. Materials Science and Technology, 2005, 21(5):613-618.
    [26] Matz J E, Eagar T W. Carbide formation in alloy 718 during electron-beam solid freeform fabrication[J]. Metallurgical and Materials Transactions A, 2002, 33(8):2559-2567.
    [27] Bush R W, Brice C A. Elevated temperature characterization of electron beam freeform fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er[J]. Materials Science and Engineering:A, 2012, 554:12-21.
    [28] Wallace T A, Bey K S, Taminger K M, et al. A design of experiments approach defining the relationships between processing and microstructure for Ti-6Al-4V[R]. National Aeronautics And Space Administration Hampton Va Langley Research Center, 2004.
    [29] 陈彬斌. 电子束熔丝沉积快速成形传热与流动行为研究[D]. 武汉:华中科技大学, 2013.
    [30] Tang Q, Pang S, Chen B, et al. A three dimensional transient model for heat transfer and fluid flow of weld pool during electron beam freeform fabrication of Ti-6-Al-4-V alloy[J]. International Journal of Heat and Mass Transfer, 2014, 78:203-215.
    [31] Yan W, Yue Z, Zhang J. Study on the residual stress and warping of stiffened panel produced by electron beam freeform fabrication[J]. Materials & Design, 2016, 89:1205-1212.
    [32] 赵健. 电子束填丝焊接熔化过渡行为及铜/钢焊接研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
  • [1] 顾小燕, 林筱鹏, 王金凤, 李桓.  固溶处理对CMT电弧熔丝增材Inconel 625合金组织与性能调控 . 焊接学报, 2023, 44(5): 1-7. doi: 10.12073/j.hjxb.20220608001
    [2] 王宏宇, 黄金雷, 陈胜, 朱建, 毛计洲.  基于Cu-Al-Fe合金的粉芯丝材增材制造理论及其温度场分析 . 焊接学报, 2023, 44(4): 111-119. doi: 10.12073/j.hjxb.20220519002
    [3] 徐富家, 杨义成, 雷振, 黄瑞生, 李荣, 张彦东.  激光同轴送粉增材制造粉末束流关键特征表征与分析 . 焊接学报, 2022, 43(8): 68-72. doi: 10.12073/j.hjxb.20220430002
    [4] 苗玉刚, 李春旺, 邵丹丹, 赵羽扬, 魏超, 张本顺.  碳钢旁路热丝PAW增材制造成形及组织和性能调控 . 焊接学报, 2022, 43(4): 55-60. doi: 10.12073/j.hjxb.20220109001
    [5] 冯曰海, 汤荣华, 刘思余, 陈琪.  308L不锈钢热丝等离子弧增材构件组织和性能 . 焊接学报, 2021, 42(5): 77-83. doi: 10.12073/j.hjxb.20200512001
    [6] 舒凤远, 牛司成, 何鹏, 隋少华, 张小东.  高熵非晶材料及其增材制造技术研究进展 . 焊接学报, 2021, 42(9): 1-8. doi: 10.12073/j.hjxb.20201203001
    [7] 王廷, 王一帆, 魏连峰, 李齐贤, 蒋思远.  TC4钛合金低压电子束熔丝沉积层组织与性能 . 焊接学报, 2020, 41(10): 54-59. doi: 10.12073/j.hjxb.20200803002
    [8] 陈国庆, 尹乾兴, 司晓庆, 张秉刚.  铝锂合金焊接技术的研究现状分析 . 焊接学报, 2019, 40(8): 155-160. doi: 10.12073/j.hjxb.2019400225
    [9] 苗玉刚, 李春旺, 赵慧慧, 邹俊攀, 张鹏.  铜/钢复合接头旁路热丝等离子弧增材特性分析 . 焊接学报, 2019, 40(5): 95-99. doi: 10.12073/j.hjxb.2019400134
    [10] 占彬, 冯曰海, 何杰, 刘思余.  碳钢双丝与单丝等离子弧增材制造成形及组织特征分析 . 焊接学报, 2019, 40(6): 77-81. doi: 10.12073/j.hjxb.2019400158
    [11] 何杰, 冯曰海, 张林, 占彬.  高强Al-Mg合金钨极氩弧双丝增材制造工艺与组织性能 . 焊接学报, 2019, 40(7): 109-113. doi: 10.12073/j.hjxb.2019400191
    [12] 樊丁, 李楠, 黄健康, 余淑荣, 袁文.  旁路耦合微束等离子弧增材制造自适应高度控制系统 . 焊接学报, 2019, 40(11): 1-7. doi: 10.12073/j.hjxb.2019400279
    [13] 徐俊强, 彭勇, 周琦, 王克鸿, 朱军.  异种钛合金协同送丝等离子增材制造试验 . 焊接学报, 2019, 40(9): 59-64. doi: 10.12073/j.hjxb.2019400236
    [14] 段梦伟,彭勇,周琦,强伟.  水浴PTIG微变形电弧增材制造工艺 . 焊接学报, 2018, 39(9): 113-116. doi: 10.12073/j.hjxb.2018390235
    [15] 苗玉刚1,李春旺1,张鹏2,封小松3,赵慧慧3.  不锈钢旁路热丝等离子弧增材制造接头特性分析 . 焊接学报, 2018, 39(6): -. doi: 10.12073/j.hjxb.2018390144
    [16] 王立伟, 陈树君, 肖珺, 魏蓬生.  熔滴主动靶向的激光间接电弧复合增材制造技术初探 . 焊接学报, 2017, 38(3): 71-74.
    [17] 柏久阳, 王计辉, 林三宝, 杨春利.  铝合金电弧增材制造焊道宽度尺寸预测 . 焊接学报, 2015, 36(9): 87-90.
    [18] 冯吉才, 王廷, 张秉刚, 陈国庆.  异种材料真空电子束焊接研究现状分析 . 焊接学报, 2009, (10): 108-112.
    [19] 梁志芳, 李午申, 王迎娜.  热喷涂制备纳米涂层的研究现状与展望 . 焊接学报, 2003, (6): 94-96.
    [20] 吴言高, 李午申, 邹宏军, 冯灵芝.  焊接数值模拟技术发展现状 . 焊接学报, 2002, (3): 89-92.
  • 加载中
计量
  • 文章访问数:  1653
  • HTML全文浏览量:  44
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-23

国内外电子束熔丝沉积增材制造技术发展现状

doi: 10.12073/j.hjxb.2018390214
    基金项目:  国家自然科学基金资助项目(51774106)

摘要: 随着增材制造技术的不断发展,各种增材制造技术,如电弧增材制造、激光增材制造和电子束增材制造等,在其相应的领域内展开了广泛的研究.文中总结了电子束熔丝沉积增材制造技术的特点.重点介绍了国内外对电子束熔丝沉积技术开展的研究工作,简要介绍了国内外学者在电子束熔丝沉积技术设备和工艺方面取得的最新研究成果.分析了电子束熔丝沉积技术目前亟需展开的研究工作,并展望了该技术应向活泼难熔金属、复合材料、梯度材料制备与大型复杂构件的增材制造等方向发展.

English Abstract

陈国庆,树西,张秉刚,冯吉才. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123-128. doi: 10.12073/j.hjxb.2018390214
引用本文: 陈国庆,树西,张秉刚,冯吉才. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123-128. doi: 10.12073/j.hjxb.2018390214
CHEN Guoqing, SHU Xi, ZHANG Binggang, FENG Jicai. State-of-arts of electron beam freeform fabrication technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 123-128. doi: 10.12073/j.hjxb.2018390214
Citation: CHEN Guoqing, SHU Xi, ZHANG Binggang, FENG Jicai. State-of-arts of electron beam freeform fabrication technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 123-128. doi: 10.12073/j.hjxb.2018390214
参考文献 (32)

目录

    /

    返回文章
    返回