飞机发动机叶片激光熔覆性能
Resaerch of laser cladding performance of engine blades
-
摘要: 为了修复飞机发动机叶片(K417G)的铸造缺陷和损伤,采用了500W-IPG光纤激光熔覆系统将镍基合金粉末(RCF-201)熔覆到镍基高温合金K417G基体上.利用显微镜、扫描电子显微镜(SEM)、X射线衍射(XRD)、电子探针(EPMA)和能谱仪(EDS)等分析了堆焊层的组织和成分,用显微硬度计分析了堆焊层硬度分布,用高温蠕变实验机分析了堆焊层高温蠕变性能.试验结果表明,熔覆层从熔合线到表面的组织依次由平面晶、柱状晶和等轴晶组成;熔覆层的组织为亚共晶组织,初晶相为富镍固溶体γ-Ni,共晶组织为γ-Ni+Cr7C3+Cr23C6+(Mo0.54,Ti0.46) C;熔覆层的硬度约为650 HV,约是母材硬度(350 HV)的1.86倍;在950℃/235 MPa条件下,激光熔敷试样的蠕变寿命最长约为26.17 h,且断裂位置位于母材.Abstract: In order to repair aircraft engine blades (K417G) of the casting defects and damage. Ni-based alloy powder (RCF-201) was cladded on a nickel-based superalloy K417G substrate by a 500W-IPG fiber laser cladding system. The microstructure and composition of the surfacing layer were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), electron probe microanalysis (EPMA) and energy dispersive spectrometer (EDS), the hardness distribution of surfacing layer was analyzed by microhardness tester, the creep properties of surfacing layer was analyzed by high temperature creep testing machine. The results show that, the microstructure of the cladding layer from the fusion line to the surface consists of plane crystal, columnar crystal and equiaxed crystal; The microstructure of the cladding layer is hypoeutectic structure, the primary crystal phase is Ni-rich solid solution and the eutectic structure is γ-Ni + Cr7C3 + Cr23C6 + (Mo0.54, Ti0.46) C; The hardness of the cladding layer is about 650 HV, which is about 1.86 times the hardness of the base metal (350 HV); Under the condition of 950℃/235 MPa, the creep life of laser cladding specimen is about 26.17 h and the fracture position is located at the base metal.
-
Keywords:
- laser cladding /
- superalloy K417G /
- hypoeutectic structure /
- primary phase /
- creep life
-
-
[1] 都贝宁, 杨金侠, 崔传勇, 等. 晶粒细化对K417G高温合金蠕变性能的影响[J]. 金属学报, 2014, 50(11):1384-1392 Du Beining, Yang Jinxia, Cui Chuanyong, et al. Effects of grain refinement on creep properties of K417G superalloy[J]. Acta Metallurgica Sinica, 2014, 50(11):1384-1392 [2] 周轶群, 佟文伟, 刘芳, 等. 热障涂层对K417G合金高温低周疲劳行为的影响[J]. 材料工程, 2014(1):19-23 Zhou Yiqun, Tong Wenwei, Liu Fang, et al. Effects of thermal barrier coatings on high temperature low cycle fatigue behavior of K417G alloy[J]. Journal of Materials Engineering, 2014(1):19-23 [3] 周煜, 张峥, 赵子华, 等. 涡轮叶片蠕变损伤的恢复处理研究进展[J]. 材料热处理学报, 2012, 33(12):1-7 Zhou Yu, Zhang Zheng, Zhao Zihua, et al. Development of rejuvenation process for creep damage of turbine blades[J]. Transactions of Materials and Heat Treatment, 2012, 33(12):1-7 [4] 徐松华, 肖阳, 李健. 直升机发动机涡轮导向器激光修复组织性能研究[J]. 光学学报, 2010, 30(8):2311-2316 Xu Songhua, Xiao Yang, Li Jian. Organization property researches of the laser repair technology in the helicopter engine turbine oriented implement[J]. Acta Optica Sinica, 2010, 30(8):2311-2316 [5] 徐国建, 丁晓粉, 王志一, 等. 蒸汽发电机叶片激光堆焊层的性能[J]. 沈阳工业大学学报, 2014, 36(3):269-274 Xu Gunjian, Ding Xiaofen, Wang Zhiyi, et al. Performances of laser overlay cladding on blade of steam generator[J]. Journal of Shenyang University of Technology, 2014, 36(3):269-274 [6] 罗奎林, 郭双全, 何勇, 等. 激光熔覆修复航空发动机风扇机匣TC4钛合金静子叶片[J]. 中国表面工程, 2015, 28(6):141-146 Luo Kuilin, Guo Shuangquan, He yong, et al. Repairing TC4 titanium stator blade of aero-engine fan casing by laser cladding[J]. China Surface Engineering, 2015, 28(6):141-146 [7] Partcs K, Sepold G. Modulation of power density distribution in time and space for high speed laser cladding[J]. Mater Process. Techirol, 2008, 195(1-3):27-33. [8] Sexton L, Lavin S, Byrne U, et al. Laser cladding of aerospace materials[J]. Journal of Materals Processing Technology, 2002, 122(1):63-68.
计量
- 文章访问数: 907
- HTML全文浏览量: 9
- PDF下载量: 304