[1] |
Sun L, Zhang L, Zhong S J, et al. Reliability study of industry Sn3.0Ag0.5Cu/Cu lead-free soldered joints in electronic packaging[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(11):9164-9170.
|
[2] |
Zhang L, Xue S B, Zeng G, et al. Interface reaction between SnAgCu/SnAgCuCe solders and Cu substrate subjected to thermal cycling and isothermal aging[J]. Journal of Alloys and Compounds, 2012, 510(1):38-45.
|
[3] |
孙磊, 张亮, 钟素娟, 等. Sn1.0Ag0.5Cu和Sn3.0Ag0.5Cu钎料组织与性能对比研究[J]. 稀有金属, 2015, 39(7):589-593 Sun Lei, Zhang Liang, Zhong Sujuan, et al. Microstructure and Properties of Sn1.0Ag0.5Cu and Sn3.0Ag0.5Cu Lead-Free Solder[J]. Chinese Journal of Rare Metals, 2015, 39(7):589-593
|
[4] |
Hamada N, Uesugi T, Takigawa Y, et al. Effect of addition of small amount of Zinc on microstructural evolution and thermal shock behavior in low-Ag Sn-Ag-Cu solder joints[J]. Materials Transactions, 2013, 54(5):796-805.
|
[5] |
Spinelli E J, Garcia A. Development of solidification microstructure and tensile mechanical properties of Sn-0.7Cu and Sn-0.7Cu-2.0Ag solders[J]. Journal of Materials Science:Materials in Electronics, 2014, 25(1):478-486.
|
[6] |
Bui Q V, Jung S B. Evaluation of mechanical properties of low-Ag ball grid array solder joints using a high-speed ball shear test[J]. Journal of Alloys and Compounds, 2014, 589:590-595.
|
[7] |
Cheng F J, Gao F, Zhang J Y, et al. Tensile properties and wettability of SAC307 and SAC105 low Ag lead-free solder alloys[J]. Journal of Materials Science, 2011, 46(10):3424-3429.
|
[8] |
Shnawah D A A, Said S B M, Sabri M F M, et al. Microstructure, mechanical, and thermal properties of the Sn-1Ag-0.5Cu solder alloy bearing Fe for electronics applications[J]. Materials Science and Engineering A, 2012, 551:160-168.
|
[9] |
Hodulova E, Palcut M, Lechovic E, et al. Kinetics of intermetallic phase formation at the interface of Sn-Ag-Cu-X (X=Bi, In) solders with Cu substrate[J]. Journal of Alloys and Compounds, 2011, 509(25):7052-7059.
|
[10] |
Lin K S, Huang H Y, Chou C P. Interfacial reaction between Sn-1Ag-0.5Cu (-Co) solder and Cu substrate with Au/Ni surface finish during reflow reaction[J]. Journal of Alloys and Compounds, 2009, 471(1-2):291-295.
|
[11] |
Yang L, Ge J G, Zhang Y C, et al. Effect of BaTiO3 on the microstructure and mechanical properties of Sn1.0Ag0.5Cu lead-free[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(1):613-619.
|
[12] |
张亮, 韩继光, 郭永环, 等. 含纳米铝颗粒SnAgCu钎料组织与性能[J]. 焊接学报, 2013, 34(6):65-68 Zhang Liang, Han Jiguang, Guo Yonghuan, et al. Microstructure and properties of SnAgCu solders bearing Al nano-particles[J]. Transactions of the China Welding Institution, 2013, 34(6):65-68
|
[13] |
Gain A K, Fouzder T, Chan Y C, et al. The influence of addition of Al nano-particles on the microstructure and shear strength of eutectic Sn-Ag-Cu solder on Au/Ni metallized Cu pads[J]. Journal of Alloys and Compounds, 2010, 506(1):216-223.
|
[14] |
Li Y, Zhao X C, Liu Y, et al. Effect of TiO2 addition concentration on the wettability and intermetallic compounds growth of Sn3.0Ag0.5Cu-xTiO2 nano-composite solders[J]. Journal of Materials Science:Materials in Electronics, 2014, 25(9):3816-3827.
|