高级检索

纳米铝颗粒增强Sn1.0Ag0.5Cu钎料性能及机理

孙磊1,陈明和1,谢兰生1,张亮2,朱建东3

孙磊1,陈明和1,谢兰生1,张亮2,朱建东3. 纳米铝颗粒增强Sn1.0Ag0.5Cu钎料性能及机理[J]. 焊接学报, 2018, 39(8): 47-50. DOI: 10.12073/j.hjxb.2018390199
引用本文: 孙磊1,陈明和1,谢兰生1,张亮2,朱建东3. 纳米铝颗粒增强Sn1.0Ag0.5Cu钎料性能及机理[J]. 焊接学报, 2018, 39(8): 47-50. DOI: 10.12073/j.hjxb.2018390199
SUN Lei1, CHEN Minghe1, XIE Lansheng1, ZHANG Liang2, ZHU Jiandong3. Properties and mechanism of nano Al particles reinforced Sn1.0Ag0.5Cu solders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 47-50. DOI: 10.12073/j.hjxb.2018390199
Citation: SUN Lei1, CHEN Minghe1, XIE Lansheng1, ZHANG Liang2, ZHU Jiandong3. Properties and mechanism of nano Al particles reinforced Sn1.0Ag0.5Cu solders[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 47-50. DOI: 10.12073/j.hjxb.2018390199

纳米铝颗粒增强Sn1.0Ag0.5Cu钎料性能及机理

基金项目: 国家自然科学基金资助项目(51475220);江苏省“六大人才高峰”高层次人才资助项目(XCL022);江苏省“青蓝工程”中青年学术带头人计划;新型钎焊材料与技术国家重点实验室开放课题资助项目(郑州机械研究所SKLABFMT201503);南京航空航天大学博士学位论文创新与创优基金(BCXJ18-06);江苏省研究生科研与实践创新计划资助项目(KYCX18_0318)

Properties and mechanism of nano Al particles reinforced Sn1.0Ag0.5Cu solders

  • 摘要: 通过机械混合的方法,制备Sn1.0Ag0.5Cu-xAl复合钎料.采用DSC、STR-1000型微焊点强度测试仪及SEM,研究了纳米铝颗粒对低银Sn1.0Ag0.5Cu钎料组织与性能的影响.结果表明,微量纳米铝颗粒的添加对钎料的熔化温度影响较小,其熔点均在226.9~229.0℃之间.随着纳米Al元素含量的增加,钎料的润湿角逐渐减小,力学性能逐渐增加,当纳米Al元素的添加量为0.1%时,焊点的拉伸力达到最大,为7.1 N.此外,Sn1.0Ag0.5Cu-0.1Al钎料的内部组织得到显著细化,焊点界面金属间化合物的生长也得到明显抑制,主要归因于纳米颗粒对金属间化合物生长的吸附作用.
    Abstract: Sn1.0Ag0.5Cu-xAl composite solders were prepared by mechanically mixing method. The effect of nano Al particles on the microstructure and properties of Sn1.0Ag0.5Cu solder were investigated by differnetial scanning calorimetry, STR-1000 micro-joint strength tester and SEM. The results showed that adding nano Al particles does not cause a considerable change in the melting temperature. All samples ranged from 226.9 to 229℃. With the addition of nano Al particles, the wetting angle was decreased and mechanical property was increased. When the addition of nano Al particles was 0.1%, the pull force of solder joint reached the maximum, which was 7.1 N. In addition, the microstructure of Sn1.0Ag0.5Cu-0.1Al solder was significantly refined, and the thickness of interfacial intermetallic compounds (IMC) was effectively inhibited, which may attributed to the adsorption of nanoparticles.
  • [1] Sun L, Zhang L, Zhong S J, et al. Reliability study of industry Sn3.0Ag0.5Cu/Cu lead-free soldered joints in electronic packaging[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(11):9164-9170.
    [2] Zhang L, Xue S B, Zeng G, et al. Interface reaction between SnAgCu/SnAgCuCe solders and Cu substrate subjected to thermal cycling and isothermal aging[J]. Journal of Alloys and Compounds, 2012, 510(1):38-45.
    [3] 孙磊, 张亮, 钟素娟, 等. Sn1.0Ag0.5Cu和Sn3.0Ag0.5Cu钎料组织与性能对比研究[J]. 稀有金属, 2015, 39(7):589-593 Sun Lei, Zhang Liang, Zhong Sujuan, et al. Microstructure and Properties of Sn1.0Ag0.5Cu and Sn3.0Ag0.5Cu Lead-Free Solder[J]. Chinese Journal of Rare Metals, 2015, 39(7):589-593
    [4] Hamada N, Uesugi T, Takigawa Y, et al. Effect of addition of small amount of Zinc on microstructural evolution and thermal shock behavior in low-Ag Sn-Ag-Cu solder joints[J]. Materials Transactions, 2013, 54(5):796-805.
    [5] Spinelli E J, Garcia A. Development of solidification microstructure and tensile mechanical properties of Sn-0.7Cu and Sn-0.7Cu-2.0Ag solders[J]. Journal of Materials Science:Materials in Electronics, 2014, 25(1):478-486.
    [6] Bui Q V, Jung S B. Evaluation of mechanical properties of low-Ag ball grid array solder joints using a high-speed ball shear test[J]. Journal of Alloys and Compounds, 2014, 589:590-595.
    [7] Cheng F J, Gao F, Zhang J Y, et al. Tensile properties and wettability of SAC307 and SAC105 low Ag lead-free solder alloys[J]. Journal of Materials Science, 2011, 46(10):3424-3429.
    [8] Shnawah D A A, Said S B M, Sabri M F M, et al. Microstructure, mechanical, and thermal properties of the Sn-1Ag-0.5Cu solder alloy bearing Fe for electronics applications[J]. Materials Science and Engineering A, 2012, 551:160-168.
    [9] Hodulova E, Palcut M, Lechovic E, et al. Kinetics of intermetallic phase formation at the interface of Sn-Ag-Cu-X (X=Bi, In) solders with Cu substrate[J]. Journal of Alloys and Compounds, 2011, 509(25):7052-7059.
    [10] Lin K S, Huang H Y, Chou C P. Interfacial reaction between Sn-1Ag-0.5Cu (-Co) solder and Cu substrate with Au/Ni surface finish during reflow reaction[J]. Journal of Alloys and Compounds, 2009, 471(1-2):291-295.
    [11] Yang L, Ge J G, Zhang Y C, et al. Effect of BaTiO3 on the microstructure and mechanical properties of Sn1.0Ag0.5Cu lead-free[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(1):613-619.
    [12] 张亮, 韩继光, 郭永环, 等. 含纳米铝颗粒SnAgCu钎料组织与性能[J]. 焊接学报, 2013, 34(6):65-68 Zhang Liang, Han Jiguang, Guo Yonghuan, et al. Microstructure and properties of SnAgCu solders bearing Al nano-particles[J]. Transactions of the China Welding Institution, 2013, 34(6):65-68
    [13] Gain A K, Fouzder T, Chan Y C, et al. The influence of addition of Al nano-particles on the microstructure and shear strength of eutectic Sn-Ag-Cu solder on Au/Ni metallized Cu pads[J]. Journal of Alloys and Compounds, 2010, 506(1):216-223.
    [14] Li Y, Zhao X C, Liu Y, et al. Effect of TiO2 addition concentration on the wettability and intermetallic compounds growth of Sn3.0Ag0.5Cu-xTiO2 nano-composite solders[J]. Journal of Materials Science:Materials in Electronics, 2014, 25(9):3816-3827.
  • 期刊类型引用(2)

    1. 陈妍,付媛媛,汪子妍,潘越. 不同热处理工艺对45钢组织结构和性能的影响. 广州化工. 2024(13): 120-122 . 百度学术
    2. 李新凯,王荣,王启超,董玉健. 扫描电子束微熔抛光临界功率密度规律及实验研究. 表面技术. 2021(07): 386-393 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  639
  • HTML全文浏览量:  8
  • PDF下载量:  148
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-04-14

目录

    /

    返回文章
    返回