高级检索

钎焊时间对镀镍SiCP/Al复合材料界面IMC生长的影响

徐冬霞1,范晓杰2,许国星1,丁连征1,陈思杰1,牛济泰3

徐冬霞1,范晓杰2,许国星1,丁连征1,陈思杰1,牛济泰3. 钎焊时间对镀镍SiCP/Al复合材料界面IMC生长的影响[J]. 焊接学报, 2018, 39(7): 125-128. DOI: 10.12073/j.hjxb.2018390189
引用本文: 徐冬霞1,范晓杰2,许国星1,丁连征1,陈思杰1,牛济泰3. 钎焊时间对镀镍SiCP/Al复合材料界面IMC生长的影响[J]. 焊接学报, 2018, 39(7): 125-128. DOI: 10.12073/j.hjxb.2018390189
XU Dongxia1, FAN Xiaojie2, XU Guoxing1, DING Lianzheng1, CHEN Sijie1, NIU Jitai3. Effect of soldering time on interface IMC growth of nickel-plated SiCP/Al composites[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 125-128. DOI: 10.12073/j.hjxb.2018390189
Citation: XU Dongxia1, FAN Xiaojie2, XU Guoxing1, DING Lianzheng1, CHEN Sijie1, NIU Jitai3. Effect of soldering time on interface IMC growth of nickel-plated SiCP/Al composites[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 125-128. DOI: 10.12073/j.hjxb.2018390189

钎焊时间对镀镍SiCP/Al复合材料界面IMC生长的影响

基金项目: 河南省科技攻关项目(142102210434);河南省教育厅科学技术研究重点项目(15A430026)

Effect of soldering time on interface IMC growth of nickel-plated SiCP/Al composites

  • 摘要: 采用Sn-3.0Ag-0.5Cu-3.0Bi钎料对镀镍60%和镀镍15% SiCP/6063Al复合材料之间进行真空钎焊.采用SEM,XRD对接头界面微观组织和成分进行分析.结果表明,在钎焊过程中,钎料与镍层发生界面反应生成了连续的扇贝状金属间化合物(IMC),其具体成分为(Cu,Ni)6Sn5;该IMC层排列紧凑,生长方向都垂直于界面指向钎料的内部;在钎焊过程中,IMC的生长分为生长速率较快和生长速率较缓慢两个阶段.在270℃,钎焊时间由10 min延长至40 min时,界面IMC层扇贝状形貌不变,晶粒尺寸变大;IMC层厚度增加,但是其厚度增长速率逐渐降低;钎焊接头抗剪强度不断增大.
    Abstract: SiCp/6063Al composites containing high and low volume fraction SiC after electroless nickel plating were soldered by using Sn-3.0Ag-0.5Cu-3.0Bi solder in vacuum. The microstructure and components of the interface were studied by means of SEM and XRD. The results show that in the soldering process, the solder reacts with the nickel layer and continuous scalloped intermetallic compound forms at the interface and the IMC is (Cu, Ni)6Sn5. The IMC layer is arranged compact and its growth direction perpendicular to the interface point to solder. In the soldering process, the growth of IMC can be divided into a faster growth rate stage and a slower growth rate stage. At the soldering temperature of 270℃, when soldering time is extended from 10 min to 40 min, scallop-shaped morphology of IMC keeps unchanged, the grain of IMC becomes larger. Thickness of IMC layer increases, but its growth rate is gradually reduced with increasing soldering time. The shear strength of the soldered joint improves continuously.
  • [1] 牛济泰, 卢金斌, 穆云超, 等. SiCp/ZL101复合材料与可伐合金4J29钎焊的分析[J]. 焊接学报, 2010, 31(5):37-40. Niu Jitai, Lu Jinbin, Mu Yunchao, et al. Brazing of aluminum matrix composites SiCp/ZL101 to Kovar alloy 4J29[J]. Transactions of the China Welding Institution, 2010, (5):37-40.
    [2] 徐峰. SiC增强铝基复合材料焊接特性及其储能焊[J]. 轻合金加工技术, 2010, 48(4):48-51. Xu Feng. Weldability and capacitor discharge welding of SiC reinforced aluminum matrix composites[J]. Light Alloy Fabrication Technology, 2010, (4):48-51.
    [3] Leng Xuesong, Wang Changwen, Zhang Yang, et al. Strengthing mechanism of ceramic particle reinforced bonds by ultrasonic brazing of Al MMCs[J]. Transactions of Nonferrous Metals Society of China, 2011, 12:290-294.
    [4] 尹明勇, 马立群, 王娟, 等. SiCp/Al复合材料表面化学镀镍磷合金层的工艺改进[J]. 机械工程材料, 2012, 36(9):47-49. Yin Mingyong, Ma Liqun, Wang Juan, et al. Technology improvement of electroless plating Ni-P alloy coating on SiCp/Al composite surface[J]. Materials for Mechanical Engineering, 2012, 36(9):47-49.
    [5] Choi W K, MoLee H. Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5Ag solder alloy and (Cu, electroless Ni/P) substrate[J]. Journal of Electronic Materials, 2000, 29(10):1207-1213.
    [6] Choi W K, Jang S Y, Kim J H, et al. Grain morphology of intermetallic compounds at solder joints[J]. Journal of Material Research, 2002, 17(3):597-599.
    [7] Kang S K. Ag3Sn plate formation in the solidification of nearternary eutectic Sn-Ag-Cu alloys[J]. The Journal of The Minerals, Metals Materials Society, 2003, 55(6):61-65.
    [8] Yu D Q, Wang L. The growth and roughness evolution of intermetallic compounds of Sn-Ag-Cu/Cu interface during soldering reaction[J]. Journal of Alloys and Compounds, 2008, 458(1/2):542-547.
    [9] Kim H K, Tu K N. Kinetic analysis of the soldering reaction between eutectic Sn-Pb alloy and Cu accompanied by ripening[J]. Physical Review B, 1996, 53:16027-16034.
    [10] Ronka K J, Vanloo F J, Kivilaht J J. The local nomial composition-useful concept for microjoining and interconnection applications[J]. Scripta Materialia, 1997, 37(10):1575-1581.
    [11] 商延赓, 孙大千, 朗波, 等. 金属间化合物对Sn-Ag-Cu无铅钎料钎焊接头性能的影响[J]. 吉林大学学报, 2006, 36(6):846-850. Shang Yangeng, Sun Daqian, Lang Bo, et al. Effects of intermetallic compounds on the properties of Sn-Ag-Cu lead-free solder joints[J]. Journal of Jilin University, 2006, 36(6):846-850.
  • 期刊类型引用(10)

    1. 喻红梅,周红梅,王钰寒,史舒驿茗,胡刘欢,罗元祺,邵甄胰,刘海琼,谭洪涛. 低合金高强钢焊丝熔滴过渡形态及飞溅分析研究. 成都工业学院学报. 2024(03): 10-14 . 百度学术
    2. 杨东青,谢高齐,郭顺,彭勇,王克鸿,黄俊. 排列角度对高氮钢双丝GMAW熔滴过渡行为及成形特性的影响. 机械工程学报. 2024(16): 171-179 . 百度学术
    3. 马立,范霁康,从保强,杨东青,彭勇,王克鸿. 高氮钢超音频脉冲GMA增材制造熔滴过渡特性. 兵工学报. 2024(10): 3686-3695 . 百度学术
    4. 张建,李涛,林红霞,杨东青,方辉,范霁康,王克鸿. 焊丝成分对高氮钢CMT+P焊工艺性的影响. 兵工学报. 2023(03): 792-798 . 百度学术
    5. 王星星,田家豪,李帅,方乃文,何鹏,倪增磊,温国栋. 高氮钢连接技术研究进展. 焊接学报. 2023(09): 118-128+136 . 本站查看
    6. 霍光瑞,薛钢,贺智涛,牛继承. 高强度奥氏体焊丝脉冲GMAW熔滴爆炸现象分析. 焊接学报. 2022(01): 107-112+120 . 本站查看
    7. 杨炙坤,宁凯,钟淳亮,李星燃,刘凤德,张宏. 高氮钢复合焊接焊缝氮含量与接头性能研究. 应用激光. 2022(04): 1-6 . 百度学术
    8. 黄雅馨,孙明辉,乔雷,马青军,韦晨,武鹏博,孙徕博. 节镍型中/高氮奥氏体不锈钢焊接研究进展. 金属加工(热加工). 2022(12): 17-23 . 百度学术
    9. 梁裕,高金良,冯和永,王长顺,刘平礼. 新型高氮不锈钢用绞股焊丝. 新技术新工艺. 2020(04): 12-16 . 百度学术
    10. 明珠,王克鸿,王伟,范成磊,王有祁. 焊丝含氮量及焊接电流对高氮钢焊缝组织和性能影响. 焊接学报. 2019(01): 104-108+165-166 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  878
  • HTML全文浏览量:  3
  • PDF下载量:  133
  • 被引次数: 19
出版历程
  • 收稿日期:  2017-03-16

目录

    /

    返回文章
    返回