双脉冲MIG工艺参数对异种不锈钢焊缝质量影响分析
Effect of process parameters on weld quality during double-pulsed gas metal arc welding of dissimilar stainless steel
-
摘要: 针对2205与316L异种不锈钢材料焊接工艺参数难控制的问题,采用双脉冲熔化极气体保护焊(DP-MIG)工艺分别研究了强、弱脉冲个数与焊接速度对焊缝成形质量的影响,利用小波分析仪采集并分析了焊接过程中的电参数,对获得的对接焊缝进行了拉伸试验与金相分析.结果表明,焊接速度对焊缝质量影响最大,其次为弱脉冲个数、强脉冲个数,不同的强弱脉冲个数对焊缝质量的影响较小;接头断裂主要发生在焊缝处与靠近焊缝的母材316L一侧;随着焊接速度增加,焊接热输入减小,冷却速度变快,缩短铁素体发生转变的时间,导致金相组织相对细小.Abstract: To solve the problem of welding process parameters are difficult to control on dissimilar stainless steel(2205 and 316L), the double-pulsed melting inert-gas welding (DP-MIG) was conducted on the 2205 duplex stainless steel and 316L stainless steel. The effects of the number of strong pulses, the number of weak pulses and the welding speed were studied. The electrical parameters in the welding process were collected through the wavelet analyzer. In addition, the mechanical tensile and metallographic tests were executed. The results demonstrated that the welding speed had the highest impact on the welding quality among all three factors, which was followed by the number of weak pulses and the number of strong pulses had the least impact. The welded seam obtained by various numbers of strong and weak pulses was relatively uniform, indicating that the effect of the number of strong and weak pulses on the welded seam was relatively low. The tensile fracture mainly occurred in the joint and the base material part of the 316L stainless steel. When the welding speed was increased, the heat input reduced during the welding of the welded seam, the cooling rate of the welded seam accelerated, whereas the ferrite transition duration reduced, which led to a relatively fine structure.
-
Keywords:
- 2205 duplex stainless stell /
- 316L stainless stell /
- double pulse /
- MIG
-
-
[1] 耿韶宁. 2205双相不锈钢高效化焊接接头组织和性能的研究[D]. 山东大学硕士学位论文, 2016. [2] Thanaporn Thonondaeng, Kittichai Fakpan, Krittee Eidhed. Dissimilar metals welding of CP titanium to 304 stainless steel using GTAW process[J]. Applied Mechanics and Materials, 2016, 4215(848):43-47. [3] Wichan Chuaiphan, Chandra Ambhorn Somrerk, Satian Niltawach, et al. Dissimilar welding between AISI 304 stainless steel and AISI 1020 carbon steel plates[J]. Applied Mechanics and Materials, 2013, 2187(268):283-290. [4] 秦国梁, 马宏, 耿培皓, 等. 45钢/304不锈钢连续驱动摩擦焊接工艺[J]. 焊接学报, 2015, 36(08):1-4. Qin Guoliang, Ma Hong, Geng Peihao, et al. Continuous-drive friction welding of 45 steel to 304 stainless steel[J]. Transactions of the China Welding Institution, 2015, 36(08):1-4. [5] 王治宇, 许海刚, 吴玮巍, 等. 2205双相不锈钢的激光-MIG复合焊接头性能[J]. 焊接学报, 2011, 32(2):105-108. Wang Zhiyu, Xu Haigang, Wu Weiwei, et al. Joint performance of duplex stainless 2205 by laser MIG hybrid welding[J]. Transactions of the China Welding Institution, 2011, 32(2):105-108. [6] 周峰, 赵霞, 查向东, 等. 一种新型镍基耐蚀合金与304奥氏体不锈钢异种金属焊接接头的组织和力学性能[J]. 金属学报, 2014, 50(11):1335-1342. Zhou Feng, Zhao Xia, Zha Xiangdong, et al. Microstructure and mechanical properties of the welding joint of a new corrosion resisting nickel-based alloy and 304 austenitic stainless steel[J]. Acta Metallurgica Sinica, 2014, 50(11):1335-1342.[DOI: 10.11900/0412.1961.2014.00284] [7] 姚屏, 薛家祥, 朱强, 等. 基于概率密度分布图的双丝脉冲焊稳定性定量评价[J]. 焊接学报, 2014, 35(7):51-54. Yao Ping, Xue Jiaxiang, Zhu Qiang et al. Quantitative evaluation of double wire pulsed welding stability based on probability density distribution[J]. Transactions of the China Welding Institution, 2014, 35(7):51-54. [8] Yao Ping, Xue Jiaxiang, Zhong Liangwen, et al. Intelligent process expert database of double pulse MIG welding of Al-Si alloy[J]. China Welding, 2012, 21(1):59-63. [9] 谢煌生, 王磊磊, 沙幸威, 等. 强弱脉冲比率对AA6061铝合金双脉冲焊焊缝质量影响分析[J]. 焊接学报, 2015, 36(12):77-80. Xie Huangsheng, Wang Leilei, Sha Xingwei, et al. Analysis of strong and weak pulse ratio on weld quality of AA6061 aluminum alloy double pulsed gas metal arc welding[J]. Transactions of the China Welding Institution, 2015, 36(12):77-80. [10] Yoganandh J, Kannan T, Babu S P K, et al. Optimization of GMAW process parameters in austenitic stainless steel cladding using genetic algorithm based computational models[J]. Experimental Techniques, 2013. 37(5):48-58.[DOI: 10.1111/ext.2013.37.issue-5] -
期刊类型引用(20)
1. 李碧晗,王亦奇,汪瑞军. 微弧离子沉积技术研究现状与应用进展. 焊接. 2025(02): 55-65 . 百度学术
2. 王明伟,高磊,郭昊亮,张文超. 纳米碳化钨涂层电火花沉积工艺参数试验研究. 热加工工艺. 2024(18): 74-78 . 百度学术
3. 李梦楠,韩红彪,李世康,侯玉杰. 旋转电极接触力对电火花沉积放电过程参数和材料转移的影响. 焊接学报. 2023(01): 71-77+132-133 . 本站查看
4. 李忠盛,吴护林,陈海涛,丛大龙,张敏,何庆兵,彭冬. 钢表面电火花沉积合成W-Mo高熔点复合涂层. 表面技术. 2023(10): 250-258 . 百度学术
5. 张孟卓,姚利松,何星. 电火花沉积在金属耐磨防腐领域的应用研究进展. 材料保护. 2023(11): 102-117 . 百度学术
6. 王彦芳,潘辰妍,石志强,何艳玲,韩彬. 块体高熵非晶合金的制备与表征综合实验教学探索与实践. 实验技术与管理. 2022(04): 142-146 . 百度学术
7. 郝丽敏,葛志宏,都宇. 内圆表面的电火花合金化强化修复装置研究. 现代制造工程. 2022(06): 63-67+84 . 百度学术
8. 何艳玲,王彦芳,斯佳佳,石志强. 电火花沉积Invar/非晶复合涂层的组织与性能. 金属热处理. 2022(11): 238-244 . 百度学术
9. 田芳,纪秀林,严春妍,赵建华. 循环气压结合超声辅助封孔剂封孔处理对铁基非晶合金涂层摩擦磨损性能的影响. 腐蚀与防护. 2022(11): 1-6+53 . 百度学术
10. 张勇,李丽,常青,王晓明,赵阳,朱胜,徐安阳,高宪伟. 电火花沉积技术研究现状与展望. 表面技术. 2021(01): 150-161 . 百度学术
11. 高继文,李永彬,黄晓望. 超声波冲击法对微弧火花沉积涂层性能的影响. 焊接. 2021(02): 52-56+64 . 百度学术
12. 王顺,童金钟,韩红彪. 一种电火花沉积接触力自动控制装置和沉积试验. 焊接学报. 2021(03): 42-47+100 . 本站查看
13. 王顺,韩红彪,李世康,李梦楠. 基于正交试验的圆柱电极参数对电火花沉积质量影响分析. 焊接学报. 2021(07): 37-43+100 . 本站查看
14. 刘宇,刘国良,苏全宁,曲嘉伟,王紫光,张生芳. 钛合金表面电火花沉积NiCr-3涂层性能的工艺规律研究. 电加工与模具. 2021(06): 26-30 . 百度学术
15. 赵航,高畅,伍晓宇,徐斌,雷建国. 超声辅助电火花粉末沉积WC-Ni金属陶瓷涂层的微观结构及摩擦学性能. 机械工程学报. 2021(23): 252-261 . 百度学术
16. 张建斌,张雷雷,刘航,容煜,焦凯,石玗. 电火花沉积修复铝合金组织与可降解性能. 表面技术. 2020(10): 224-232 . 百度学术
17. 葛志宏,邓静. 用于回转体外表面的电火花强化修复装置研究. 电加工与模具. 2020(06): 29-31+47 . 百度学术
18. 王彦芳,闫晗,李娟,孙胜越,宋增金,石志强. 电火花沉积FeCoCrNiCu高熵合金涂层的组织结构与耐蚀性. 表面技术. 2019(06): 144-149 . 百度学术
19. 马焰议,王海燕,张宇鹏,易耀勇,董福宇. Zr_(67.8)Cu_(24.7)Al_(3.43)Ni_(4.07)非晶合金激光焊接晶化控制及组织性能分析. 焊接学报. 2019(12): 138-142+167 . 本站查看
20. 钟鹏,司爽爽,宋增金,孙旭,石志强,王彦芳. 工艺参数对电火花沉积非晶层表面质量的影响. 热加工工艺. 2018(18): 125-128 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 692
- HTML全文浏览量: 5
- PDF下载量: 83
- 被引次数: 30