高级检索

热输入对超高强钢DP1000激光焊接接头微观组织和断裂机制的影响

李龙1,李辉2,徐梅1,徐亚鹏3,江海涛1,米振莉1

李龙1,李辉2,徐梅1,徐亚鹏3,江海涛1,米振莉1. 热输入对超高强钢DP1000激光焊接接头微观组织和断裂机制的影响[J]. 焊接学报, 2018, 39(7): 75-80. DOI: 10.12073/j.hjxb.2018390179
引用本文: 李龙1,李辉2,徐梅1,徐亚鹏3,江海涛1,米振莉1. 热输入对超高强钢DP1000激光焊接接头微观组织和断裂机制的影响[J]. 焊接学报, 2018, 39(7): 75-80. DOI: 10.12073/j.hjxb.2018390179
LI Long1, LI Hui2, XU Mei1, XU Yapeng3, JIANG Haitao1, MI Zhenli1. Effect of heat input on microstructure and fracture mechanism of ultra high strength DP1000 steel laser welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 75-80. DOI: 10.12073/j.hjxb.2018390179
Citation: LI Long1, LI Hui2, XU Mei1, XU Yapeng3, JIANG Haitao1, MI Zhenli1. Effect of heat input on microstructure and fracture mechanism of ultra high strength DP1000 steel laser welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 75-80. DOI: 10.12073/j.hjxb.2018390179

热输入对超高强钢DP1000激光焊接接头微观组织和断裂机制的影响

基金项目: 国家自然科学基金资助项目(51371032);国家重点研发计划(2017YFB0304404)

Effect of heat input on microstructure and fracture mechanism of ultra high strength DP1000 steel laser welded joint

  • 摘要: 利用光学显微镜(OM)、扫描电子显微镜(SEM)观察超高强双相钢DP1000激光焊接接头微观组织的变化,通过显微硬度的测试、拉伸试验研究其不同热输入下焊接接头的力学性能.结果表明,随着热输入的增加,由回火区和两相区组成的软化区的组织发生了明显的变化,软化区内平均硬度值减小,其宽度尺寸增加,导致拉伸试样的断裂位置发生变化.当热输入不高于52 J/mm,焊接试样的抗拉强度是母材的97.75%,软化区宽度最大约为506 μm,断裂发生在母材上;当热输入达到72 J/mm,软化区宽度约为621 μm,断裂发生在软化区内.
    Abstract: The microstructure of ultra high strength DP1000 steel laser welded joint was observed by optical microscope (OM) and scanning electron microscope (SEM). The mechanical properties of different heat input welding joints were studied by microhardness test and tensile test. The results show that the microstructure of the softening zone, which is composed of the tempering zone and the two phase zone, changes obviously with the increase of heat input. Furthermore, the average hardness in the softening zone decreases and the width size increases, resulting in the change of the tensile specimen fracture position. When the heat input is not higher than 52 J/mm, the tensile strength of the welded specimen is 97.75% of the base metal, the maximum width of the softening zone is about 506 μm, and the fracture occurs on the base metal. When the heat input reaches 72 J/mm, the width of the softening zone is about 621 μm, and the fracture occurs in the softening area.
  • [1] 唐荻, 米振莉, 陈雨来. 国外新型汽车用钢的技术要求及研究开发现状[J]. 钢铁, 2005, 40(6):1-15. Tang Di, Mi Zhenli, Chen Yulai. Technology and research and development of advanced automobile steel abroad[J]. Iron & Steel, 2005, 40(6):1-15[DOI: 10.3321/j.issn:1001-0963.2005.06.001]
    [2] Lee J H, Park S H, Kwon H S, et al. Laser, tungsten inert gas, and metal active gas welding of DP780 steel:comparison of hardness, tensile properties and fatigue resistance[J]. Materials & Design, 2014, 64:559-565.
    [3] Reisgen U, Schleser M, Mokrov O, et al. Shielding gas influences on laser weldability of tailored blanks of advanced automotive steels[J]. Applied Surface Science, 2010, 257(5):1401-1406.[DOI: 10.1016/j.apsusc.2010.08.042]
    [4] Han T K, Park B G, Kang C Y. Hardening characteristics of CO2 laser welds in advanced high strength steel[J]. Metals and Materials International, 2012, 18(3):473-479.[DOI: 10.1007/s12540-012-3014-2]
    [5] Rossini M, Spena P R, Cortese L, et al. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry[J]. Materials Science and Engineering A, 2015, 628:288-296.[DOI: 10.1016/j.msea.2015.01.037]
    [6] Hernandez V H B, Nayak S S, Zhou Y. Tempering of martensite in dual-phase steels and its effects on softening behavior[J]. Metallurgical and Materials Transactions A, 2011, 42(10):3115.[DOI: 10.1007/s11661-011-0739-3]
    [7] Panda S K, Sreenivasan N, Kuntz M L, et al. Numerical simulations and experimental results of tensile test behavior of laser butt welded DP980 steels[J]. Journal of Engineering Materials and Technology, 2008, 130:041003-1.[DOI: 10.1115/1.2969256]
  • 期刊类型引用(15)

    1. 于洋,高志伟,龚宝明,邓彩艳,刘锦,苏显栋. 硫化氢环境中X80管线钢焊接粗晶热影响区的断裂韧性. 焊接. 2025(01): 40-45 . 百度学术
    2. 谢耿,张斌,刘海龙,沐卫东,蔡艳. 690 MPa低合金高强钢焊接技术及接头组织研究进展. 热加工工艺. 2024(17): 8-12+19 . 百度学术
    3. 赵阳,刘旭明,张楠,王军生,潘辉. 准动态模型预估的Q960E大梁钢SR-CGHAZ疲劳裂纹扩展机理. 焊接学报. 2024(09): 84-93 . 本站查看
    4. 朱梓坤,韩阳,张舟,张义,周龙早. Q690D低合金高强钢模拟焊接热影响区的组织和性能. 焊接. 2022(01): 26-33+40 . 百度学术
    5. 张庆素,陈振业,陈波,齐建军,胡晓波,冯伟. Q690抗震耐蚀钢埋弧焊熔敷金属性能研究. 电焊机. 2022(03): 105-110 . 百度学术
    6. 朱梓坤,韩阳,张舟,张义,周龙早. Q690D低合金高强钢模拟焊接热影响区的组织和性能. 机械制造文摘(焊接分册). 2022(03): 12-19+36 . 百度学术
    7. 孙宪进,诸建阳,许峰. 热输入对贝氏体海工钢焊接热影响区显微组织与低温韧性的影响. 特钢技术. 2021(01): 17-20 . 百度学术
    8. 张楠,田志凌,潘辉,郑江鹏,侯晓东. 热轧汽车结构钢在轻量化商用车上的发展与应用. 汽车文摘. 2020(09): 1-11 . 百度学术
    9. 李俊江,王焱. 热力管道平焊法兰焊缝失效分析. 焊接技术. 2020(08): 90-92 . 百度学术
    10. 杜宝帅,索帅,张忠文,李新梅,邓化凌. Q690高强钢脉冲MAG焊接头的组织与性能. 热加工工艺. 2020(19): 48-51 . 百度学术
    11. 雒卫廷. 螺栓连接结构冲击断裂行为数值模拟. 兵器材料科学与工程. 2020(06): 82-85 . 百度学术
    12. 张楠,田志凌,张书彦,张飞虎. SG90T-9C高强韧性渣气联保药芯焊材的研发. 机械工程材料. 2020(12): 53-61 . 百度学术
    13. 张楠,田志凌,张书彦,董现春,潘辉,张熹. 700 MPa微合金高强钢焊接软化机理及解决方案. 钢铁研究学报. 2019(03): 318-326 . 百度学术
    14. 张楠,田志凌,张书彦,向明,何雨棋,董现春. Q700D热影响粗晶区疲劳寿命与小裂纹扩展分析. 钢铁研究学报. 2019(08): 741-747 . 百度学术
    15. 俞照辉,严红革,严军辉,文忠,李玮. 热影响区连续孔隙状裂纹的表征及产生机理. 焊接学报. 2019(05): 84-88+164-165 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  717
  • HTML全文浏览量:  6
  • PDF下载量:  60
  • 被引次数: 19
出版历程
  • 收稿日期:  2017-11-19

目录

    /

    返回文章
    返回