高级检索

7050铝合金搅拌摩擦焊接头腐蚀行为分析

张华1,崔冰1,林三宝2,石功奇3

张华1,崔冰1,林三宝2,石功奇3. 7050铝合金搅拌摩擦焊接头腐蚀行为分析[J]. 焊接学报, 2018, 39(7): 71-74. DOI: 10.12073/j.hjxb.2018390178
引用本文: 张华1,崔冰1,林三宝2,石功奇3. 7050铝合金搅拌摩擦焊接头腐蚀行为分析[J]. 焊接学报, 2018, 39(7): 71-74. DOI: 10.12073/j.hjxb.2018390178
ZHANG Hua1, CUI Bing1, LIN Sanbao2, SHI Gongqi3. Corrosion behavior of friction stir welded joints of 7050 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 71-74. DOI: 10.12073/j.hjxb.2018390178
Citation: ZHANG Hua1, CUI Bing1, LIN Sanbao2, SHI Gongqi3. Corrosion behavior of friction stir welded joints of 7050 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 71-74. DOI: 10.12073/j.hjxb.2018390178

7050铝合金搅拌摩擦焊接头腐蚀行为分析

基金项目: 国家自然科学基金资助项目(51774047);北京长城学者培养计划(CIT&TCD20170309)

Corrosion behavior of friction stir welded joints of 7050 aluminum alloy

  • 摘要: 7050高强铝合金被广泛应用于飞机的承力构件、火箭舱段、导弹、飞船等空间载荷承力结构的制备.航空航天飞行器服役环境恶劣(雷电、雨水、辐射、除冰液等),对腐蚀性能特别是应力腐蚀开裂性能有较高的要求,然而高强铝合金FSW接头在特定服役环境下的接头性能数据包括腐蚀性能尚不完善.基于此,文中重点研究不同焊接热输入对接头腐蚀行为的影响.采用晶间腐蚀、四点弯曲应力腐蚀试验,选择不同的加载应力,揭示高强铝合金腐蚀行为.结果表明,高强铝合金应力腐蚀敏感性强,不论是优化焊接参数,还是改变热输入,单纯通过焊接过程本身控制很难改善应力腐蚀敏感性.
    Abstract: The 7050 high-strength aluminum alloy is widely used in the manufacture of aircraft load-bearing components, rocket chamber sections, missiles and load-bearing structures of spacecraft. The aircraft always service in harsh environments, such as lightning, rain, radiation, deicing fluid, and so on. So there is high requirement for corrosion performance, especially stress corrosion cracking. However, in the specific service environment, the properties of high-strength aluminum alloy FSW joints including corrosion resistance are imperfect. Based on this, this article focused on the influence of different welding heat input on the corrosion behavior of joints.We selected different loading stresses, via the intergranular corrosion, four point bending stress corrosion text to reveal the corrosion behaviors of the high-strength aluminum alloy.The results indicated that high-strength aluminum alloy stress corrosion resistance is sensitive. Whether to optimize welding parameters or change the heat input, it is difficult to improve stress corrosion resistance by simply controlling the welding process itself.
  • [1] Thomas W M, Nichlas E D, Needham J C, et al. Improvements relating to friction welding, United Kingdom, 0615480b1[P].
    [2] 方连军, 刘晓娟, 高献娟. 搅拌摩擦焊接技术在航空航天工业中的应用[J]. 中国新技术新产品, 2013, (7):89-90. Fang Lianjun, Liu Xiaojuan, Gao Xianjuan. The application of friction stir welding technology in aerospace industry[J]. New Technology and Products of China, 2013, (7):89-90.[DOI: 10.3969/j.issn.1673-9957.2013.07.078]
    [3] Cavaliere P, Nobile R, Panella F W, et al. Mechanical and microstructural behavior of 2024-7075 aluminum alloy sheets joined by friction stir welding[J]. International Journal of Machine Tools and Manufacture, 2006, 46:588-594.[DOI: 10.1016/j.ijmachtools.2005.07.010]
    [4] Lumsden J, Pollock G, Mahoney M. Effect of tool design on stress corrosion resistance of FSW AA7050-T7451[C]//San Francisco, CA, USA:Friction Stir Welding and Processing Ⅲ, 2005:19-25.
    [5] Lee C M, Lee B, Goodfellow C. Pitting corrosion of friction stir welds in 7050-T7451 aluminium alloy[R]. TWI Report No. 845, 2006.
    [6] Hatamleh O, Singh P M, Garmestani H. Corrosion susceptibility of peened friction stir welded 7075 aluminum alloy joints[J]. Corrosion Science, 2009, 51(1):135-143.[DOI: 10.1016/j.corsci.2008.09.031]
    [7] Surekha K, Murty B S, Rao K P. Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy[J]. Solid State Sciences, 2009, 11(4):907-917.[DOI: 10.1016/j.solidstatesciences.2008.11.007]
    [8] Jariyaboon M, Davenport A J, Ambat R, et al. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351[J]. Corrosion Science, 2007, 49(2):877-909.[DOI: 10.1016/j.corsci.2006.05.038]
    [9] 张华, 孙大同, 张贺, 等. 2219铝合金搅拌摩擦焊接接头剥落腐蚀机理[J]. 稀有金属材料与工程, 2015, 44(1):103-107. Zhang Hua, Sun Datong, Zhang He, et al. Exfoliation corrosion mechanism of friction stir welded 2219 aluminum alloy[J]. Rare Metal Materials and Engineering, 2015, 44(1):103-107.
    [10] 张华, 孙大同, 张贺, 等. 2219铝合金搅拌摩擦焊接头腐蚀行为[J]. 焊接学报, 2014, 35(7):39-42. Zhang Hua, Sun Datong, Zhang He, et al. Corrosion behavior of friction stir welded 2219 aluminum alloy[J]. Transactions of the China Welding, 2014, 35(7):39-42.
    [11] 张华, 张贺, 孙大同, 等. 2219铝合金母材及搅拌摩擦焊接头应力腐蚀敏感性[J]. 焊接学报, 2014, 35(12):7-10. Zhang Hua,Zhang He, Sun Datong, et al. Stress corrosion cracking susceptibility of 2219 aluminium alloy parent metal and its friction stir weldment[J]. Transactions of the China Welding 2014, 35(12):7-10.
  • 期刊类型引用(10)

    1. 喻红梅,周红梅,王钰寒,史舒驿茗,胡刘欢,罗元祺,邵甄胰,刘海琼,谭洪涛. 低合金高强钢焊丝熔滴过渡形态及飞溅分析研究. 成都工业学院学报. 2024(03): 10-14 . 百度学术
    2. 杨东青,谢高齐,郭顺,彭勇,王克鸿,黄俊. 排列角度对高氮钢双丝GMAW熔滴过渡行为及成形特性的影响. 机械工程学报. 2024(16): 171-179 . 百度学术
    3. 马立,范霁康,从保强,杨东青,彭勇,王克鸿. 高氮钢超音频脉冲GMA增材制造熔滴过渡特性. 兵工学报. 2024(10): 3686-3695 . 百度学术
    4. 张建,李涛,林红霞,杨东青,方辉,范霁康,王克鸿. 焊丝成分对高氮钢CMT+P焊工艺性的影响. 兵工学报. 2023(03): 792-798 . 百度学术
    5. 王星星,田家豪,李帅,方乃文,何鹏,倪增磊,温国栋. 高氮钢连接技术研究进展. 焊接学报. 2023(09): 118-128+136 . 本站查看
    6. 霍光瑞,薛钢,贺智涛,牛继承. 高强度奥氏体焊丝脉冲GMAW熔滴爆炸现象分析. 焊接学报. 2022(01): 107-112+120 . 本站查看
    7. 杨炙坤,宁凯,钟淳亮,李星燃,刘凤德,张宏. 高氮钢复合焊接焊缝氮含量与接头性能研究. 应用激光. 2022(04): 1-6 . 百度学术
    8. 黄雅馨,孙明辉,乔雷,马青军,韦晨,武鹏博,孙徕博. 节镍型中/高氮奥氏体不锈钢焊接研究进展. 金属加工(热加工). 2022(12): 17-23 . 百度学术
    9. 梁裕,高金良,冯和永,王长顺,刘平礼. 新型高氮不锈钢用绞股焊丝. 新技术新工艺. 2020(04): 12-16 . 百度学术
    10. 明珠,王克鸿,王伟,范成磊,王有祁. 焊丝含氮量及焊接电流对高氮钢焊缝组织和性能影响. 焊接学报. 2019(01): 104-108+165-166 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  614
  • HTML全文浏览量:  3
  • PDF下载量:  87
  • 被引次数: 19
出版历程
  • 收稿日期:  2016-12-18

目录

    /

    返回文章
    返回