[1] |
李聪成, 荆洪阳, 徐连勇, 等. 蠕变疲劳交互作用下裂纹萌生的有限元模拟[J]. 焊接学报. 2016, 37(08):5-8. Li Congcheng, Jing Hongyang, Xu Lianyong, et al. Numerical simulation of crack initiation under creep-fatigue interaction in P92 steel[J]. Transactions of the China Welding Institution, 2016, 37(08):5-8.
|
[2] |
Wang N, Tu S T, Xuan F Z. A novel prediction method of creep rupture life of 9-12% chromium ferritic steel based on abductive network[J]. Engineering Failure Analysis, 2013, 31:302-310.
|
[3] |
Samuel E I, Choudhary B K, Palaparti D P R, et al. Creep deformation and rupture behaviour of P92 steel at 923K[J]. Procedia Engineering, 2013, 55:64-69.
|
[4] |
Chang Y, Xu H, Ni Y, et al. The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel[J]. Materials Science and Engineering:A, 2015, 636:70-76.
|
[5] |
毛雪平, 陆道纲, 徐鸿, 等. P92钢高温低周疲劳的实验研究[J]. 原子能科学技术. 2010, 44(10):1212-1216. Mao Xueping, Lu Daogang, Xu Hong, et al. Experimental study on elevated temperature low cycle fatigue of P92 steel[J]. Atomic Energy Science and Technology, 2010, 44(10):1212-1216.
|
[6] |
Kannan R, Sankar V, Sandhya R, et al. Comparative evaluation of the low cycle fatigue behaviours of P91 and P92 steels[J]. Procedia Engineering, 2013, 55:149-153.
|
[7] |
张振, 胡正飞, 范立坤, 等. 国产P92钢低周疲劳性能与断裂特征研究[J]. 动力工程学报. 2014, 34(04):330-336. Zhang Zhen, Hu Zhengfei, Fan Likun, et al. Low cycle fatigue and fracture properties of domestic P92 heat-resistant steels[J]. Journal of Chinese Society of Power Engineering, 2014, 34(04):330-336.
|
[8] |
Luo, Y R, Huang, C X, Tian, R H. Effect of strain rate on low cycle fatigue behaviors of high-strength structural steel[J]. Journal of Iron and Steel Research, 2013, 20(7):50-56.
|
[9] |
Park J S, Kim S J, Lee C S. Effect of W addition on the low cycle fatigue behavior of high Cr ferritic steels[J]. Materials Science and Engineering:A, 2001, 298(1-2):127-136.
|