高级检索

基于频率—相位编码信号激励的焊缝超声检测分析

张佳莹1,丛森2,刚铁1,林尚扬1,3

张佳莹1,丛森2,刚铁1,林尚扬1,3. 基于频率—相位编码信号激励的焊缝超声检测分析[J]. 焊接学报, 2018, 39(7): 7-11,41. DOI: 10.12073/j.hjxb.2018390165
引用本文: 张佳莹1,丛森2,刚铁1,林尚扬1,3. 基于频率—相位编码信号激励的焊缝超声检测分析[J]. 焊接学报, 2018, 39(7): 7-11,41. DOI: 10.12073/j.hjxb.2018390165
ZHANG Jiaying1, CONG Sen2, GANG Tie1, LIN Shangyang1,3. Research on weld ultrasonic testing based on frequency-phase coded excitation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 7-11,41. DOI: 10.12073/j.hjxb.2018390165
Citation: ZHANG Jiaying1, CONG Sen2, GANG Tie1, LIN Shangyang1,3. Research on weld ultrasonic testing based on frequency-phase coded excitation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 7-11,41. DOI: 10.12073/j.hjxb.2018390165

基于频率—相位编码信号激励的焊缝超声检测分析

基金项目: 国家自然科学基金资助项目(51575134,51705484,51175113)

Research on weld ultrasonic testing based on frequency-phase coded excitation

  • 摘要: 焊接结构在工业领域的应用十分广泛,常应用于复杂结构中,对焊接质量要求较高,需要高时间分辨率的超声检测方法检测焊缝内部缺陷.为了提高检测结果的时间分辨率,将雷达领域的编码激励与脉冲压缩技术引入焊缝检测中,提出一种基于幅度加权频率调制的相位编码激励检测方法,该方法的激励信号为幅度加权的线性调频信号与巴克码信号的复合.结果表明,相同带宽下,与线性调频信号和巴克码激励的检测结果相比,所提出的激励方法检测结果的时间分辨率较高,同时,有效降低了调频带宽对检测结果的影响.
    Abstract: Weld is widely used in the industry, especially in the complicated structure. High time resolution is needed to measure the position and size of flaw in the weld more accurately. Coded excitation and pulse compression in radar field has been introduced into weld ultrasonic testing to improve the time resolution. Amplitude weighted frequency-phase coded excitation is proposed to obtain good testing results with higher time resolution and lower sidelobe. The proposed excitation signal combines amplitude weighted linear frequency modulation signal and Barker code. compared with LFM, Barker and conventional brief pulse excitation, the results of simulations and experiments demonstrate that, time resolution of the proposed excitation is higher with the same chirp bandwidth and the chirp bandwidth has less impact on the proposed excitation.
  • [1] 刘富君, 唐萍, 凌张伟, 等. 电站锅炉集箱管座角焊缝缺陷安全性分析方法[J]. 焊接学报, 2013, 34(10):83-86. Liu Fujun, Tang Ping, Ling Zhangwei, et al. Study on security analysis method for tube filled weld on power boiler set box[J]. Transactions of the China Welding Institution, 2013, 34(10):83-86.
    [2] 高向东, 谢溢龙, 陈子琴, 等. 高强钢焊接缺陷磁光成像分形特征检测[J]. 焊接学报, 2017, 38(7):1-4. Gao Xiangdong, Xie Yilong, Chen Ziqin, et al. Fractal feature detection of high-strength steel weld defects by magneto-optical imaging[J]. Transactions of the China Welding Institution, 2017, 38(7):1-4.
    [3] Sanchez J R, Pocci D, Oelze M L. A novel coded excitation scheme to improve spatial and contrast resolution of quantitative ultrasound imaging[J]. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, 2009, 56(10):2111-2123.[DOI: 10.1109/TUFFC.2009.1294]
    [4] Mohamed M, Laureti S, Davis L A J, et al. Low frequency coded waveform for the inspection of concrete structures[C]//Ultrasonics Symposium (IUS), 2015 IEEE International. IEEE, 2015:1-4.
    [5] Li C Z, Shi F, Zhang B. Research on LFM signals in steel materials[C]//Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2012 Symposium on. IEEE, 2012:13-16.
    [6] Cong S, Gang T, Zhang J. Ultrasonic time-of-flight diffraction testing with linear frequency modulated excitation for austenitic stainless steel welds[J]. Journal of Nondestructive Evaluation, 2015, 34(2):8.[DOI: 10.1007/s10921-015-0281-0]
    [7] Gang T, Sheng Z Y, Tian W L. Time resolution improvement of ultrasonic TOFD testing by pulse compression technique[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2012, 54(4):193-197.[DOI: 10.1784/insi.2012.54.4.193]
    [8] 丛森, 刚铁, 张佳莹, 等. LFM激励信号在超声TOFD检测中的应用[J]. 焊接学报, 2015, 36(2):63-66. Cong Sen, Gang Tie, Zhang Jiaying, et al. Application of LFM excitation signals to ultrasonic TOFD test[J]. Transactions of the China Welding Institution, 2015, 36(2):63-66.
    [9] Chen W H, Deng J L. Ultrasonic non-destructive testing using Barker code pulse compression techniques[J]. Ultrasonics, 1988, 26(1):23-26.[DOI: 10.1016/0041-624X(88)90044-3]
    [10] 周正干, 马保全, 孙志明, 等. 相位编码脉冲压缩方法在空气耦合超声检测信号处理中的应用[J]. 机械工程学报, 2014, 50(2):48-54. Zhou Zhenggan, Ma Baoquan, Sun Zhiming, et al. Application of phase coded pulse compression method to air-coupled ultrasonic testing signal processing[J]. Journal of Mechanical Engineering, 2014, 50(2):48-54.
    [11] Rouyer J, Mensah S, Vasseur C, et al. The benefits of compression methods in acoustic coherence tomography[J]. Ultrasonic Imaging, 2015, 37(3):205-223.[DOI: 10.1177/0161734614553310]
    [12] Firouzi K, Cox B T, Treeby B E, et al. A first-order k-space model for elastic wave propagation in heterogeneous media[J]. The Journal of the Acoustical Society of America, 2012, 132(3):1271-1283.[DOI: 10.1121/1.4730897]
  • 期刊类型引用(10)

    1. 喻红梅,周红梅,王钰寒,史舒驿茗,胡刘欢,罗元祺,邵甄胰,刘海琼,谭洪涛. 低合金高强钢焊丝熔滴过渡形态及飞溅分析研究. 成都工业学院学报. 2024(03): 10-14 . 百度学术
    2. 杨东青,谢高齐,郭顺,彭勇,王克鸿,黄俊. 排列角度对高氮钢双丝GMAW熔滴过渡行为及成形特性的影响. 机械工程学报. 2024(16): 171-179 . 百度学术
    3. 马立,范霁康,从保强,杨东青,彭勇,王克鸿. 高氮钢超音频脉冲GMA增材制造熔滴过渡特性. 兵工学报. 2024(10): 3686-3695 . 百度学术
    4. 张建,李涛,林红霞,杨东青,方辉,范霁康,王克鸿. 焊丝成分对高氮钢CMT+P焊工艺性的影响. 兵工学报. 2023(03): 792-798 . 百度学术
    5. 王星星,田家豪,李帅,方乃文,何鹏,倪增磊,温国栋. 高氮钢连接技术研究进展. 焊接学报. 2023(09): 118-128+136 . 本站查看
    6. 霍光瑞,薛钢,贺智涛,牛继承. 高强度奥氏体焊丝脉冲GMAW熔滴爆炸现象分析. 焊接学报. 2022(01): 107-112+120 . 本站查看
    7. 杨炙坤,宁凯,钟淳亮,李星燃,刘凤德,张宏. 高氮钢复合焊接焊缝氮含量与接头性能研究. 应用激光. 2022(04): 1-6 . 百度学术
    8. 黄雅馨,孙明辉,乔雷,马青军,韦晨,武鹏博,孙徕博. 节镍型中/高氮奥氏体不锈钢焊接研究进展. 金属加工(热加工). 2022(12): 17-23 . 百度学术
    9. 梁裕,高金良,冯和永,王长顺,刘平礼. 新型高氮不锈钢用绞股焊丝. 新技术新工艺. 2020(04): 12-16 . 百度学术
    10. 明珠,王克鸿,王伟,范成磊,王有祁. 焊丝含氮量及焊接电流对高氮钢焊缝组织和性能影响. 焊接学报. 2019(01): 104-108+165-166 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  749
  • HTML全文浏览量:  9
  • PDF下载量:  124
  • 被引次数: 19
出版历程
  • 收稿日期:  2017-11-26

目录

    /

    返回文章
    返回