高级检索

铁基表面碳化钛致密陶瓷层的组织性能与增韧机制

王亮亮1,2,3,樊少忠1,3,付永红1,2,闫洪华1,2,许云华2,3,钟黎声2,林红1

王亮亮1,2,3,樊少忠1,3,付永红1,2,闫洪华1,2,许云华2,3,钟黎声2,林红1. 铁基表面碳化钛致密陶瓷层的组织性能与增韧机制[J]. 焊接学报, 2018, 39(5): 121-124. DOI: 10.12073/j.hjxb.2018390136
引用本文: 王亮亮1,2,3,樊少忠1,3,付永红1,2,闫洪华1,2,许云华2,3,钟黎声2,林红1. 铁基表面碳化钛致密陶瓷层的组织性能与增韧机制[J]. 焊接学报, 2018, 39(5): 121-124. DOI: 10.12073/j.hjxb.2018390136
WANG Liangliang1,2,3, FAN Shaozhong1,3, FU Yonghong1,2, YAN Honghua1,2, XU Yunhua2,3, ZHONG Lisheng2,4, LIN Hong1. In situ TiC dense particles layer tissue properties andtoughening mechanism on gray cast iron surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 121-124. DOI: 10.12073/j.hjxb.2018390136
Citation: WANG Liangliang1,2,3, FAN Shaozhong1,3, FU Yonghong1,2, YAN Honghua1,2, XU Yunhua2,3, ZHONG Lisheng2,4, LIN Hong1. In situ TiC dense particles layer tissue properties andtoughening mechanism on gray cast iron surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 121-124. DOI: 10.12073/j.hjxb.2018390136

铁基表面碳化钛致密陶瓷层的组织性能与增韧机制

In situ TiC dense particles layer tissue properties andtoughening mechanism on gray cast iron surface

  • 摘要: 利用铸渗复合-热处理工艺在铁基体表面原位制备了致密碳化钛陶瓷增强复合材料,分别研究了复合材料的物相组成、微观组织及细观组织、显微硬度、断裂韧性. 结果表明,钛板中的钛原子和石墨片中溶解析出的碳原子扩散到冶金结合面原位生成了碳化钛致密陶瓷层,且致密陶瓷层与钛板、致密陶瓷层与基体之间结合良好,界面干净. 致密陶瓷层显微硬度平均值为3 027.08 HV0.1,远远大于基体硬度和残余钛板硬度,试样纵截面致密陶瓷层在20 N载荷下在压痕顶端萌生,扩展了裂纹,其断裂韧性为4.5~14.2 MPa·m1/2,远高于一般的陶瓷材料.
    Abstract: Dense titanium carbide reinforced iron-based surface composites were prepared via casting-infiltration and heat treatment process. The phase composition, microstructures and microscopic tissue of samples were researched. Meanwhile, the microhardness and fracture toughness were also studied. The results shows: Titanium carbide dense ceramic layer in situ formed by Ti atoms of titanium plate and C atoms dissolved from graphite sheet diffuse into the metallurgical bonding surface, and the bonding interface of dense layer with titanium plate and substrate are good and clean. The average microhardness of dense ceramic layer is 3 027.08 HV0.1, far greater than the residual titanium plate and matrix hardness. With 20 N loads, the dense ceramic layer longitudinal sectional cracks have initiation and propagation on the top of the indentation. The fracture toughness is between 4.5 MPa·m1/2and 14.2 MPa·m1/2, far higher than normal ceramics.
  • [1] 毛小南, 周 廉, 曾泉浦, 等. TiC颗粒增强钛基复合材料的形变断裂[J]. 稀有金属材料与工程, 2000, 29(4): 217-220.Mao Xiaonan, Zhou Lian, Zeng Quanpu,et al. Deformational fracture of titanium matrix composites reinforced by TiC particles[J]. Rare Metal Materials and Engineering, 2000, 29(4): 217-220.[2] 高 立, 周 芳, 何良华. Al-TiC2-C系激光熔覆制备TiC/Fe复合涂层及其组织与性能[J]. 表面技术, 2011, 40(6): 7-9.Gao Li, Zhou Fang, He Lianghua. Microstructure and property of laser cladding TiC/Fe-based composite coating in Al-TiO2-C system[J]. Surface Technology, 2011, 40(6): 7-9.[3] 肖茂华, 赵 威, 何 宁, 等. WC-Co/GH4169摩擦副在不同介质下的磨损性能研究[J]. 热加工工艺, 2013, 42(24): 90-92.Xiao Maohua, Zhao Wei, He Ning,et al. Study on friction and wear properties of WC-Co sliding against GH4169 in different gas[J]. Hot Working Technology, 2013, 42(24): 90-92.[4] 张苹苹, 沈卫平, 李 岩. 热冲击对添加纳米TaC的SPS烧结钨力学性能的影响[J]. 热加工工艺, 2012, 41(4): 88-91.Zhang Pingping, Shen Weiping, Li Yan. Effect of thermal shock on mechanical properties of dispersion strengthened tungsten with nano-TaC by SPS[J]. Hot Working Technology, 2012, 41(4): 88-91.[5] Li Qingtang, Lei Yongping, Fu Hanguang. Laser cladding in-situ NbC particle reinforced Fe-based composite coatings with rare earth oxide addition[J]. Surface and Coatings Technology, 2014, 239(25): 102-107.[6] 宗 琳, 刘政军, 李乐成, 等. 含钛铁基耐磨复合材料的研制[J]. 焊接学报, 2012, 33(4): 53-56.Zong Lin, Liu Zhengjun, Li Lecheng,et al. Investigation on wear resistance of Fe-based composite material containing titanium[J]. Transactions of the China Welding Institution, 2012, 33(4): 53-56.[7] 刘政军, 李乐成, 宗 琳, 等. 原位合成TiC-M7C3陶瓷硬质相显微组织的分析[J]. 焊接学报, 2012, 33(3): 65-68.Liu Zhengjun, Li Lecheng, Zong Lin,et al. Analysis on microstructure of in-situ synthesis TiC-M7C3 ceramic hard phase[J]. Transactions of the China Welding Institution, 2012, 33(3): 65-68.[8] 赫庆坤, 王 勇, 赵卫民, 等. 激光原位合成TiC-Ni-Mo涂层界面组织与磨损性能[J]. 焊接学报, 2009, 30(1): 77-80.He Qingkun, Wang Yong, Zhao Weimin,et al. Interface microstructure and wear properties of TiC-Ni-Mo coatings prepared by in-situ fabrication of laser cladding[J]. Transactions of the China Welding Institution, 2009, 30(1): 77-80.[9] 王建斌, 许云华, 李成晨, 等. 原位合成TiC颗粒增强铁基复合材料热、 动力学的研究[J]. 热加工工艺, 2010, 39(8): 104-107.Wang Jianbin, Xu Yunhua, Li Chengchen,et al. Research on thermodynamics and kinetics of in-situ synthesized TiC/Fe composite coating prepared by laser cladding[J]. Thermal Processing, 2010, 39(8): 104-107.[10] 刘兆晶, 姚秀荣, 章德铭, 等. 铁基复合材料中原位TiC增强颗粒生成机制[J]. 哈尔滨理工大学学报, 2004, 4(9): 31-35.Liu Zhaojing, Yao Xiurong, Zhang Deming,et al. Study on formation mechanism of in situ TiC particle-reinforced in iron matrix composites[J]. Journal of Harbin University of Science and Technology, 2004, 4(9): 31-35.[11] 王亮亮, 许云华, 钟黎声, 等. TiC/Fe表面梯度复合材料微区组织及陶瓷层磨损性能研究[J]. 焊接学报, 2013, 34(5): 49-53.Wang Liangliang, Xu Yunhua, Zhong Lisheng,et al. Microstructure of matrix and wear resistance of ceramic layer of TiC/Fe surface gradient composites[J]. Transactions of China Welding and Institution, 2013, 34(5): 49-53.[12] Sharifitabar M, Vahdati Khaki J, Haddad Sabzevar M. Microstructure and wear resistance of in-situ TiC-Al2O3particles reinforced Fe-based coatings produced by gas tungsten arc cladding[J]. Surface and Coatings Technology, 2016, 285(2016): 47-56.[13] Wang Zhi, Lin Tao, He Xinbo,et al. Fabrication and properties of the TiC reinforced high-strength steel matrix composite[J]. International Journal of Refractory Metals and Hard Materials, 2016(58): 16-21.[14] Zhong Lisheng, Xu Yunhua, Mirabbos Hojamberdiev. In situ fabrication of titanium carbide particulates-reinforced iron matrix composites[J]. Materials and Design, 2011(32): 3790-3795.[15] Lin Chiming, Chang Chiaming, Chen Jiehao,et al. Hardness, toughness and cracking systems of primary (Cr,Fe)23C6 and (Cr,Fe)7C3 carbides in high-carbon Cr-based alloys by indentation[J]. Materials Science and Engineering A, 2010(527): 5038-5043.[16] Gu Shengting, Chai Guozhong, Wu Huaping,et al. Characterization of local mechanical properties of laser-cladding H13-TiC composite coatings using nanoindentation and finite element analysis[J]. Materials and Design, 2012(39): 72-80.
  • 期刊类型引用(3)

    1. 常留红,郭洋,郑景琦,李飘,薛雄. 规则波作用下混凝土-环氧涂层界面气泡初始损伤演化. 中国海洋大学学报(自然科学版). 2025(02): 138-148 . 百度学术
    2. 马玉娥,杨萌,孙文博. 基于近场动力学理论的热障涂层热冲击开裂行为. 航空学报. 2022(06): 238-247 . 百度学术
    3. 李佐君,梁伟,钟舜聪,戴晨煜. TGO及初始裂纹对热障涂层裂纹形核与扩展影响的有限元分析. 失效分析与预防. 2021(05): 300-308+313 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  473
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 8
出版历程
  • 收稿日期:  2016-08-15

目录

    /

    返回文章
    返回