高级检索

光纤激光焊接950 MPa级车用TWIP钢接头组织和性能

韩志强1,董丹阳2,刘杨1,靳森2,唐振宇2

韩志强1,董丹阳2,刘杨1,靳森2,唐振宇2. 光纤激光焊接950 MPa级车用TWIP钢接头组织和性能[J]. 焊接学报, 2018, 39(5): 63-68. DOI: 10.12073/j.hjxb.2018390124
引用本文: 韩志强1,董丹阳2,刘杨1,靳森2,唐振宇2. 光纤激光焊接950 MPa级车用TWIP钢接头组织和性能[J]. 焊接学报, 2018, 39(5): 63-68. DOI: 10.12073/j.hjxb.2018390124
HAN Zhiqiang1, DONG Danyang2, LIU Yang1, JIN Sen2, TANG Zhenyu2. Microstructure and mechanical properties of fiber laser welding of 950 MPa grade twinning-induced plasticity steel for automotive industry[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 63-68. DOI: 10.12073/j.hjxb.2018390124
Citation: HAN Zhiqiang1, DONG Danyang2, LIU Yang1, JIN Sen2, TANG Zhenyu2. Microstructure and mechanical properties of fiber laser welding of 950 MPa grade twinning-induced plasticity steel for automotive industry[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 63-68. DOI: 10.12073/j.hjxb.2018390124

光纤激光焊接950 MPa级车用TWIP钢接头组织和性能

Microstructure and mechanical properties of fiber laser welding of 950 MPa grade twinning-induced plasticity steel for automotive industry

  • 摘要: 对950 MPa级车用孪生诱发塑性钢(TWIP950)板材进行光纤激光对接焊,分析接头微观组织和微区成分,进行显微硬度测试和室温拉伸试验,研究其不同应变速率下的拉伸性能及断裂行为. 结果表明,焊缝区奥氏体组织粗化和锰元素烧损导致其出现硬度低于母材的软化现象,而热影响区发生硬化现象. 随应变速率增加,母材与焊接接头的抗拉强度由负应变速率敏感性改变为正应变速率敏感性;母材与焊接接头的塑性随应变速率增加呈先下降再升高又下降的变化趋势. 不同应变速率拉伸后接头均断裂在焊缝区,随应变速率增加,接头韧性断裂特征未见明显变化.
    Abstract: Laser welding of 950 MPa twinning induced plasticity steel (TWIP950) for automotive industry was performed using a fiber laser in a butt-joint configuration. The microstructure and chemical compositions of the welded joint (WJ) of TWIP950 steel were characterized. The microhardness of the WJ was tested. The tensile properties and fracture behavior of the investigated materials at various strain rates were examined using tensile testing machine at room temperature. The results showed that the microstructure of fusion zone (FZ) was mainly austenitic dendrite. The softening phenomenon took place in FZ due to the evaporation loss of manganese and grain coarsening in FZ. The microhardness of the outer heat-affected zone (HAZ) was higher than that of the base metal (BM). The TWIP950 BM and WJ showed strain rate sensitivity and it changed from negative to positive with increasing strain rate. The ductility of the TWIP950 BM and WJ decreased first, then increased and decreased again with increasing strain rate. The tensile specimens of the TWIP950 WJ failed in the FZs at all strain rates, and the typical ductile fracture characteristics of the tensile fracture surface did not change with increasing strain rate.
  • [1] Nayak S S, Baltazar Hernandez VH, Okita Y,et al. Microstructure-hardness relationship in the fusion zone of TRIP steel welds[J]. Materials Science and Engineering A, 2012, 551: 73-81.[2] Yang H K, Zhang Z J, Dong F Y,et al. Strain rate effects on tensile deformation behaviors for Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steel[J]. Materials Science and Engineering A, 2014, 607: 551-558.[3] 董丹阳, 王观军, 马 敏, 等. 车用双相钢激光焊接接头组织性能研究[J]. 中国激光, 2012, 39(9): 09030021-09030026.Dong Danyang, Wang Guangjun, Ma Min,et al. Study on microstructure and properties of laser welding dual phase steel joints for an auto-body[J]. Chinese Journal of Lasers, 2012, 39(9): 09030021-09030026.[4] Huh H, Kim S B, Song J H,et al. Dynamic tensile characteristics of TRIP-type and DP-type steel sheets for an auto-body[J]. International Journal of Mechanical Sciences, 2008, 50: 918-931.[5] 米振莉, 杨 林, 李志超, 等. 不同焊接方法对TWIP钢焊后热影响区组织和性能的影响[J]. 焊接学报, 2013, 34(5): 9-12.Mi Zhenli, Yang Lin, Li Zhichao,et al. Study on heat-affected zone of TWIP steel after welding[J]. Transactions of the China Welding Institution, 2013, 34(5): 9-12.[6] Ma L L, Wei Y H, Hou L F,et al. Evaluation on fatigue performance and fracture mechanism of laser welded TWIP steel joint based on evolution of microstructure and micromechanical properties[J]. Journal of Iron and Steel Research, International, 2016, 23(7): 677-684.[7] Nguyen N T, Hariharan K, Barlat F,et al. Design of high strength differential TWB to enhance drawability: FE study and optimization[J]. International Journal of Percision Engineering and Manufacturing, 2014, 15(11): 2273-2283.[8] Wang T, Zhang M, Xiong W,et al. Microstructure and tensile properties of the laser welded TWIP steel and the deformation behavior of the fusion zone[J]. Materials and Design, 2015, 83: 103-111.[9] Liang Z Y, Huang W, Huang M X. Suppression of dislocations at high strain rate deformation in a twinning-induced plasticity steel[J]. Materials Science and Engineering A, 2015, 628: 84-88.[10] Liang Z Y, Wang X, Huang W,et al. Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel[J]. Acta Materialia, 2015, 88: 170-179.[11] Roncery L M, Weber S, Theisen W. Welding of twinning-induced plasticity steels[J]. Scripta Materialia, 2012, 66: 997-1001.[12] Rossini M, Spena P R, Cortese L,et al. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry[J]. Materials Science and Engineering A, 2015, 628: 288-296.[13] Xu S Q, Ruan D, Beynon J H,et al. Dynamic tensile behavior of TWIP steel under intermediate strain rate loading[J]. Materials Science and Engineering A, 2013, 573: 132-140.
  • 期刊类型引用(4)

    1. 孔玲,王玉辉,杨浩坤,彭艳. Fe-Mn-Al-C系奥氏体基低密度钢使役性能研究进展. 机械工程学报. 2024(08): 34-47 . 百度学术
    2. 万亚雄,唐立志,武学俊,章小峰,张朋彦,黄贞益. Fe-Mn-Al-C低密度高强钢焊接技术的研究与进展. 焊接. 2020(08): 45-51+63-64 . 百度学术
    3. 宫唤春. 视觉传感技术在大功率光纤激光焊接焊缝宽度特征提取的应用. 激光杂志. 2019(04): 158-160 . 百度学术
    4. 邵天巍,薛俊良,万占东,郭伟. QP980-DP980异种先进高强钢激光焊接头微观组织及力学性能. 焊接. 2019(07): 5-9+65 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  416
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 6
出版历程
  • 收稿日期:  2016-11-07

目录

    /

    返回文章
    返回