高级检索

碳钢焊接接头腐蚀的有限元模拟

路永新1,2,3,李霄1,荆洪阳2,3,徐连勇2,3,韩永典2,3

路永新1,2,3,李霄1,荆洪阳2,3,徐连勇2,3,韩永典2,3. 碳钢焊接接头腐蚀的有限元模拟[J]. 焊接学报, 2018, 39(5): 10-14. DOI: 10.12073/j.hjxb.2018390112
引用本文: 路永新1,2,3,李霄1,荆洪阳2,3,徐连勇2,3,韩永典2,3. 碳钢焊接接头腐蚀的有限元模拟[J]. 焊接学报, 2018, 39(5): 10-14. DOI: 10.12073/j.hjxb.2018390112
LU Yongxin1,2,3, LI Xiao1, JING Hongyang2,3, XU Lianyong2,3, HAN Yongdian2,3. Finite element simulation of carbon steel welded joint corrosion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 10-14. DOI: 10.12073/j.hjxb.2018390112
Citation: LU Yongxin1,2,3, LI Xiao1, JING Hongyang2,3, XU Lianyong2,3, HAN Yongdian2,3. Finite element simulation of carbon steel welded joint corrosion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 10-14. DOI: 10.12073/j.hjxb.2018390112

碳钢焊接接头腐蚀的有限元模拟

Finite element simulation of carbon steel welded joint corrosion

  • 摘要: 由于焊接接头各区域之间耐蚀性和力学性能的差异,在接头处容易发生局部腐蚀,严重威胁着管线的安全运行,需要对接头腐蚀行为进行预测. 基于电偶腐蚀原理建立了碳钢焊接接头腐蚀的有限元模型,结合COMSOL软件,对三种温度下的接头腐蚀形貌进行了预测. 并利用该模型研究了焊缝余高、焊缝与母材的面积比以及焊缝缺陷对焊缝金属腐蚀速率的影响规律. 结果表明,该有限元模型不但能进行焊接接头腐蚀行为预测,而且可为输油气管道的焊接接头设计提供理论依据.
    Abstract: Due to welded joint corrosion resistance and mechanical properties difference among various regions, the local corrosion is likely to appear in the welded joint. It seriously threatens the safety of pipeline operation, and it is need to predict the corrosion behaviour of welded joint. The finite element model of carbon steel welded joint is established based on the galvanic corrosion principle, combing the COMSOL software, the welded joint corrosion morphology under three kinds of temperature is predicted. Then the effect of weld reinforcement, the area ratio of weld metal and base metal, and weld metal defects on the weld metal corrosion rate were investigated with the model. The result showed that the finite element model not only can predict the corrosion behaviour of welded joint, and can provide the theory basis for the welded joint design of oil and gas pipeline.
  • [1] 颜爱政, 刘 华, 刘 雷,等. 长输油气管道焊接技术的应用[J]. 油气储运, 2008, 27(8): 40-43.Yan Aizheng, Liu Hua, Liu Lei,et al. Analysis to welding technologies of long distance oil and gas pipelines[J]. Oil & Gas Storage and Transportantion, 2008, 27(8): 40-43.[2] 武会宾, 刘立甫, 王立东, 等. Q125级套管钢高频电阻焊接头耐CO2/H2S腐蚀行为[J]. 焊接学报, 2013, 34(10): 17-21.Wu Huibin, Liu Lifu, Wang Lidong,et al. Corrosion behavior of high frequency resistance welding joint of Q125 grade tube steel under CO2/H2S environment[J]. Tansactions of the China Welding Institutions, 2013, 34(10): 17-21.[3] 徐连勇, 董鑫刚, 荆洪阳, 等. 3Cr低合金钢焊接接头腐蚀膜对基体的保护作用[J]. 焊接学报, 2015, 36(7): 83-87.Xu Lianyong, Dong Xingang, Jing Hongyang,et al. Protection performance of 3Cr low alloy steel weld joint corrosion product to the substrate[J]. Tansactions of the China Welding Institutions, 2015, 36(7): 83-87.[4] Lu Y, Jing H, Han Y,et al. Numerical modeling of weld joint corrosion[J]. Journal of Materials Engineering & Performance, 2016(25): 1-6.[5] Barker R, Hu X, Neville A,et al. Assessment of preferential weld corrosion of carbon steel pipework in CO2-saturated flow-induced corrosion environments[J]. Corrosion, 2013, 69(11): 1132-1143.[6] Alawadhi K, Robinson M J. Preferential weld corrosion of X65 pipeline steel in flowing brines containing carbon dioxide[J]. British Corrosion Journal, 2011, 46(4): 318-329.[7] Stenta A, Basco S, Smith A,et al. One-dimensional approach to modeling damage evolution in galvanic corrosion[J]. Corrosion Science, 2014(88): 36-48.[8] Wilder J W, Clemons C, Golovaty D,et al. An adaptive level set approach for modeling damage due to galvanic corrosion[J]. Journal of Engineering Mathematics, 2015, 91(1): 1-22.[9] Deshpande K B. Validated numerical modelling of galvanic corrosion for couples: magnesium alloy (AE44)-mild steel and AE44-aluminium alloy (AA6063) in brine solution[J]. Corrosion Science, 2010(52): 3514-3522.[10] 翁永基. 腐蚀预测和计量学基础[M]. 北京: 石油工业出版社, 2011.[11] 吕晓春, 张志毅, 李爱民, 等. 焊缝余高对焊接接头疲劳强度的影响[J]. 化学分析计量, 2011(20): 62-65.Lü Xiaochun, Zhang Zhiyi, Li Aimin,et al. Effect of weld reinforcement on welded joint fatigue strength[J]. Chemical Analysis and Measurement, 2011(20): 62-65.[12] 闫忠杰, 方洪渊, 刘雪松, 等. 机械整形新技术对铝合金焊接接头疲劳性能的影响[J]. 焊接学报, 2013, 34(7): 81-84.Yan Zhongjie, Fang Hongyuan, Liu Xuesong,et al. Effect of mechanical plastic technology on the aluminum alloy welded joint fatigue performance[J]. Tansactions of the China Welding Institutions, 2013, 34(7): 81-84.[13] 杨建国, 王 涛, 方洪渊,等. 焊缝含I型单边裂纹低匹配平余高对接接头形状参数对形状因子的影响[J]. 焊接学报, 2012, 33(9): 85-88.Yang Jianguo, Wang Tao, Fang Hongyuan,et al. Effect of weld type I unilateral crack in low matching high more than flat butt joint shape parameters on the influence of the shape factor[J]. Tansactions of the China Welding Institutions, 2012, 33(9): 85-88.[14] 张玉凤, 霍立兴, 荆洪阳, 等. 气孔、夹渣对焊接接头力学性能的影响[J]. 压力容器, 1996(4): 34-38.Zhang Yufeng, Huo Lixing, Jing Hongyang,et al. Effect of porosity and slag inclusion on the mechanical properties of welded joint[J]. The Pressure Vessel, 1996(4): 34-38.[15] 潘 庆. 2219铝合金搅拌摩擦焊接缺陷及接头力学性能研究[D]. 哈尔滨工业大学, 2007.
  • 期刊类型引用(7)

    1. 唐天祥,史清宇,周军,张春波,梁武,周梦然,张弓,陈高强. GH4169惯性摩擦焊界面摩擦及瞬态热过程数值模拟研究. 航空制造技术. 2024(10): 36-44+52 . 百度学术
    2. 梁武,周军,张春波,张露,乌彦全,李运雷. FGH96/IN718惯性摩擦焊接头高温拉伸断裂特征. 焊接学报. 2023(09): 44-52+131-132 . 本站查看
    3. 许乔郅,张国栋,袁鸿,王金雪. FGH101高温合金惯性摩擦焊接头的显微组织与力学性能. 热加工工艺. 2023(23): 63-66+71 . 百度学术
    4. 张露,张春波,廖仲祥,乌彦全,张国栋,周军. IN718/FGH96惯性摩擦焊接头焊缝区微观组织状态与织构分布特征. 电焊机. 2022(04): 8-13 . 百度学术
    5. 张广刚,赵强,刘佳涛,白瑞祥,董红刚. 基于三维双塑性体摩擦副模型的FGH96高温合金管惯性摩擦焊数值模拟. 焊接. 2022(07): 14-20 . 百度学术
    6. 郑守峰,赵强,黄文彬,王树锋,刘佳涛,祝文卉. FGH98合金惯性摩擦焊接头显微组织与力学性能. 焊接. 2022(10): 21-26 . 百度学术
    7. 刘莹莹,李洁洁,田万涛,吴方林,谭千辉. 异种合金惯性摩擦焊的研究现状. 焊接. 2021(01): 35-41+63 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  727
  • HTML全文浏览量:  32
  • PDF下载量:  5
  • 被引次数: 11
出版历程
  • 收稿日期:  2016-11-21

目录

    /

    返回文章
    返回