高级检索

激光重熔镍镀层复合工艺制备铜合金表面涂层

傅卫1,2,方洪渊1,徐凯2,白新波2

傅卫1,2,方洪渊1,徐凯2,白新波2. 激光重熔镍镀层复合工艺制备铜合金表面涂层[J]. 焊接学报, 2018, 39(4): 99-103. DOI: 10.12073/j.hjxb.2018390104
引用本文: 傅卫1,2,方洪渊1,徐凯2,白新波2. 激光重熔镍镀层复合工艺制备铜合金表面涂层[J]. 焊接学报, 2018, 39(4): 99-103. DOI: 10.12073/j.hjxb.2018390104
FU Wei1,2, FANG Hongyuan1, XU Kai2, BAI Xinbo2. Preparation of surface coating on copper alloy by laser remelting Ni plating coating composite process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 99-103. DOI: 10.12073/j.hjxb.2018390104
Citation: FU Wei1,2, FANG Hongyuan1, XU Kai2, BAI Xinbo2. Preparation of surface coating on copper alloy by laser remelting Ni plating coating composite process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 99-103. DOI: 10.12073/j.hjxb.2018390104

激光重熔镍镀层复合工艺制备铜合金表面涂层

Preparation of surface coating on copper alloy by laser remelting Ni plating coating composite process

  • 摘要: 在铜合金表面先预置镍镀层再激光重熔以获得界面冶金结合可靠的新涂层. 通过优化工艺参数,并利用多种分析手段研究了涂层的组织、界面结构和显微硬度. 结果表明,室温下采用4 200 W半导体激光重熔0.4 mm厚镍镀层可获得无缺陷且界面冶金结合可靠的激光熔覆涂层;所获新涂层组织均匀致密,物相由重熔前的γ-Ni镀层转变为重熔后的(Ni,Cu)固溶体;涂层硬度约为135 HV0.05,稍高于CuCrZr基体硬度. 镍镀层的预置和半导体激光的应用提高了铜基表面激光能量的吸收率;新涂层与铜基体间组织成分及硬度匹配保证了良好的界面相容性和可靠的界面结合.
    Abstract: Electroplated nickel coating was first deposited on the surface of CuCrZr alloy and then remelted by laser to obtain a new metallurgical coating with reliable interface and metallurgical bond. The microstructure and microhardness of laser remelting coating, and interfacial characteristics were investigated by using X ray diffraction and scanning electronmicroscopy equipped with X-ray energy dispersive microanalysis(EDX), as well as microhardness tester. The results indicated that a laser cladding coating metallurgically combined with copper substrate was obtained after 0.4 mm thick Ni coating was remelted by 4 200 W diode laser at room temperature with scanning speed of 10 mm/s. The absence of defects in the remelting coating with fine and compact structure could be observed. (Ni,Cu) solid solution phase was formed after the Ni plating composed of γ-Ni was remelted. The microhardness uniformly distributed across the section of the coating with the average value of 135 HV0.05, slightly higher than that of the copper substrate(about 125 HV0.05). The matching of the composition and hardness between the new coating and the copper matrix was the basis for ensuring good interfacial solubility and reliable metallurgical bonding.
  • [1] Bysakh S, Chattopadhyay K, Maiwald T, et al. Microstructure evolution in laser alloyed layer of Cu-Fe-Al-Si on Cu substrate[J]. Materials Science and Engineering A, 2004, 375-377: 661-665.[2] Zhang Y Z, Tu Y, Xi M Z, et al. Characterization on laser clad nickel based alloy coating on pure copper[J]. Surface & Coatings Technology, 2008, 202(24): 5924-5928.[3] Yan H, Zhang P L, Yu Z S, et al. Microstructure and tribological properties of laser-clad Ni-Cr/TiB2 composite coatings on copper with the addition of CaF2[J]. Surface & Coatings Technology, 2012, 206(19): 4046-4053.[4] Chen S Y, Liang J, Liu C S, et al. Preparation of a novel Ni/Co-based alloy gradient coating on surface of the crystallizer copper alloy by laser[J]. Applied Surface Science, 2011, 258(4): 1443-1450.[5] Dehm G, Medres B, Shepeleva L, et al. Microstructure and tribological properties of Ni-based claddings on Cu substrates[J]. Wear, 1999, 225-229: 18-26.[6] 马文有, 陈兴驰, 周克崧, 等. 铜合金表面热喷涂镍基合金层激光重熔后的显微组织及耐磨性能[J]. 材料保护, 2010, 43(2): 47-49.Ma Wenyou, Chen Xingchi, Zhou Kesong, et al. Microstructure and wear resistance of laser remelted plasma sprayed Ni-based alloy coating on copper alloy[J]. Materials Protection, 2010, 43(2): 47-49.[7] 王一雍, 孙争光, 金 辉, 等. 结晶器铜板表面激光熔覆Ni-Co-Al2O3复合涂层的微观组织及性能[J]. 功能材料, 2015, 46(20): 20148-20152.Wang Yiyong, Sun Zhengguang, Jin Hui, et al. Microstructure and property of Ni/Co/Al2O3 laser cladding layer on the surface of mold copper plate[J]. Journal of Functional Materials, 2015, 46(20): 20148-20152.[8] Yan H, Wang A H, Xu K D, et al. Microstructure and interfacial evaluation of Co-based alloy coating on copper by pulsed NdYAG multilayer laser cladding[J]. Journal of Alloys and Compounds, 2010, 505(2): 645-653.[9] 陈岁元, 董 江, 陈 军, 等. 结晶器铜合金表面激光原位制备纳米颗粒增强钴基梯度涂层[J]. 中国激光, 2011, 38(7): 131-137.Chen Suiyuan, Dong Jiang, Chen Jun, et al. Nano-Particles reinforced Co-based gradient coating with high wear-resistance prepared in-situ by laser on surface of crystallizer copper alloy[J]. Chinese Journal of Lasers, 2011, 38(7): 131-137.[10] Liu F, Liu C X, Tao X Q, et al. Laser cladding of Ni-based alloy on copper substrate[J]. Journal of University of Science and Technology Beijing, 2006, 13(4): 329-332.[11] 姚建华. 激光表面改性技术及其应用[M]. 北京: 国防工业出版社, 2012.[12] 闫 华, 张培磊, 于治水. 铜合金表面激光熔覆Ni基涂层的组织及界面结构[J]. 特种铸造及有色合金, 2013, 33(12): 1093-1097.Yan Hua, Zhang Peilei, Yu Zhishui. Microstructure and interfacial characteristics of laser cladding Ni-based coating on copper alloy[J]. Special Casting & Nonferrous Alloys, 2013, 33(12): 1093-1097.
  • 期刊类型引用(4)

    1. 孔玲,王玉辉,杨浩坤,彭艳. Fe-Mn-Al-C系奥氏体基低密度钢使役性能研究进展. 机械工程学报. 2024(08): 34-47 . 百度学术
    2. 万亚雄,唐立志,武学俊,章小峰,张朋彦,黄贞益. Fe-Mn-Al-C低密度高强钢焊接技术的研究与进展. 焊接. 2020(08): 45-51+63-64 . 百度学术
    3. 宫唤春. 视觉传感技术在大功率光纤激光焊接焊缝宽度特征提取的应用. 激光杂志. 2019(04): 158-160 . 百度学术
    4. 邵天巍,薛俊良,万占东,郭伟. QP980-DP980异种先进高强钢激光焊接头微观组织及力学性能. 焊接. 2019(07): 5-9+65 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  882
  • HTML全文浏览量:  22
  • PDF下载量:  3
  • 被引次数: 6
出版历程
  • 收稿日期:  2017-08-09

目录

    /

    返回文章
    返回