高级检索

基于信息熵的铝合金焊接接头疲劳寿命分析方法

刘亚良1,2,孙屹博1,2,邹丽1,2,杨鑫华1,2

刘亚良1,2,孙屹博1,2,邹丽1,2,杨鑫华1,2. 基于信息熵的铝合金焊接接头疲劳寿命分析方法[J]. 焊接学报, 2018, 39(4): 67-72. DOI: 10.12073/j.hjxb.2018390098
引用本文: 刘亚良1,2,孙屹博1,2,邹丽1,2,杨鑫华1,2. 基于信息熵的铝合金焊接接头疲劳寿命分析方法[J]. 焊接学报, 2018, 39(4): 67-72. DOI: 10.12073/j.hjxb.2018390098
LIU Yaliang1,2, SUN Yibo1,2, ZOU Li1,2, YANG Xinhua1,2. Fatigue life analysis method of aluminum alloy welded joints based on information entropy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 67-72. DOI: 10.12073/j.hjxb.2018390098
Citation: LIU Yaliang1,2, SUN Yibo1,2, ZOU Li1,2, YANG Xinhua1,2. Fatigue life analysis method of aluminum alloy welded joints based on information entropy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 67-72. DOI: 10.12073/j.hjxb.2018390098

基于信息熵的铝合金焊接接头疲劳寿命分析方法

Fatigue life analysis method of aluminum alloy welded joints based on information entropy

  • 摘要: 建立了基于信息熵的铝合金焊接接头疲劳数据分析模型,通过对比分析各决策属性的信息分熵,研究了应力集中、板厚与载荷类型等因素对焊接结构疲劳破坏的定量贡献. 结果表明,三种应力类型疲劳数据分布的信息总熵分别为0.997 7,0.910 0和0.817 9,基于权重信息熵的降低的总趋势与S-N曲线标准偏差越来越小的情况存在一致性. 对于基于结构应力的疲劳数据分布,膜应力集中系数(SCFm)基于权重的信息分熵为0.675 4,对于结构应力疲劳数据分布起主要作用;对于等效结构应力,应力比的基于权重的信息分熵为0.622 3,说明应力比对于等效结构应力疲劳数据分布起重要作用.
    Abstract: An analysis model of aluminum alloy welded joints fatigue data based on information entropy is proposed in this paper. Through calculating and analyzing the information entropy of decision attributes, quantitative contribution of stress concentration, plate thickness and loading mode to the fatigue destruction are researched. The results show that the total information entropy of the fatigue data based on three stress types are respectively 0.997 7, 0.910 0 and 0.817 9. There is consistency between the reducing trend of the weighted information entropy and the declining standard deviation of the S-N curves. In the S-N curve based on the structure stress, the weighted information entropy of membrane stress concentration factor (SCFm) is 0.675 4, which plays a major role in the distribution of fatigue data. In the S-N curve based on the equivalent structure stress, the weighted information entropy of stress ratio is 0.622 3, which indicates that stress ratio is an important factor that influences the distribution of fatigue data.
  • [1] Hobbacher A F. Recommendations for fatigue design of welded components[M]. Cambridge: Abington Publishing, 1996.[2] Bergan P G, Losberg I. Fatigue capacity of FPSO structures[J]. Journal of Offshore Mechanics and Arctic Engineering, 2006, 128(2): 156-161.[3] Dong P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10): 865-876.[4] The British Standards Institution. Fatigue design and assessment of steel structures: BS7608-1993[S]. London: British Standard Institute, 1999.[5] The International Institute of Welding. Stress determination for fatigue analysis welded components: IIS/IIW-1221-93[S]. Cambridge: Abington Publication, 1995.[6] Niemi E J. On the determination of hot spot stresses in the vicinity of edge grussets[M]. Paris: International Institute of Welding, 1994.[7] 罗 怡, 伍光凤, 李春天. Choi-Williams时频分布在CO2焊接电信号检测中的应用[J]. 焊接学报, 2008, 29(2): 101-103.Luo Yi, Wu Guangfeng, Li Chuntian. Application of Choi-Williams distribution to electrical signals detection in CO2 arc welding[J]. Transactions of the China Welding Institution, 2008, 29(2): 101-103.[8] 黄宝山, 何宽芳, 肖冬明. 基于LMD能谱熵的方波交流埋弧焊参数优选[J]. 焊接技术, 2014, 43(10): 29-33.Huang Baoshan, He Kuanfang, Xiao Dongming. Parameters optimal selection of square wave submerged arc welding based on LMD energy spectrum entropy[J]. Welding Technology, 2014, 43(10): 29-33.[9] 邢海燕, 葛 桦, 韩亚潼, 等. 基于熵带与DS理论的焊缝等级磁记忆量化评价[J]. 仪器仪表学报, 2016, 37(3): 610-616.Xing Haiyan, Ge Hua, Han Yatong, et al. Quantitative MMM evaluation of weld levels based on information entropy and DS evidence theory[J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 610-616.[10] 杨鑫华, 孙屹博, 邹 丽. 网格不敏感结构应力的焊接疲劳数据分布[J]. 焊接学报, 2015, 36(2): 11-15.Yang Xinhua, Sun Yibo, Zou Li. Data distribution in welding fatigue analysis based on mesh-insensitive structural stress[J]. Transactions of the China Welding Institution, 2015, 36(2): 11-15.[11] ASME Post Construction Committee. Fitness for Service, the ASME B & PV Code, Section VIII, Division 2: API 579-1/ASME FFS-1[S]. New York: American Society of Mechanical Engineers, 2007.[12] 张继国, (美)辛格. 信息熵: 理论与应用[M]. 北京: 中国水利水电出版社, 2012.[13] Sidhom N, Laamouri A, Fathallah R, et al. Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach[J]. International Journal of Fatigue, 2005, 27(7): 729-745..[14] Beretta S, Sala G. A model for fatigue strength of welded lap joints[J]. Fatigue and Fracture Engineering Materials and Structures, 2005, 28(1-2): 257-264.[15] Da Cruz J A M P, Costa J D M, Borrego L F P, et al. Fatigue life prediction in AlMgSi1 lap joint weldments[J]. International Journal of Fatigue, 2000, 22(7): 601-610.[16] Gurney T R. Influence of artificially induced residual stresses on the fatigue strength of welded light alloy specimens[J]. British Welding Journal, 1962(9): 90-95.
计量
  • 文章访问数:  863
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-12

目录

    /

    返回文章
    返回