高级检索

T2紫铜-45钢电子束焊双材料界面性能与裂纹偏转

丁浩1,鲍雨梅1,柴国钟1,杨建国1,2

丁浩1,鲍雨梅1,柴国钟1,杨建国1,2. T2紫铜-45钢电子束焊双材料界面性能与裂纹偏转[J]. 焊接学报, 2018, 39(4): 17-22. DOI: 10.12073/j.hjxb.2018390087
引用本文: 丁浩1,鲍雨梅1,柴国钟1,杨建国1,2. T2紫铜-45钢电子束焊双材料界面性能与裂纹偏转[J]. 焊接学报, 2018, 39(4): 17-22. DOI: 10.12073/j.hjxb.2018390087
DING Hao1, BAO Yumei1, CHAI Guozhong1, YANG Jianguo1,2. Study on interfacial properties and crack deflection of the T2 copper-45 steel bimaterial[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 17-22. DOI: 10.12073/j.hjxb.2018390087
Citation: DING Hao1, BAO Yumei1, CHAI Guozhong1, YANG Jianguo1,2. Study on interfacial properties and crack deflection of the T2 copper-45 steel bimaterial[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 17-22. DOI: 10.12073/j.hjxb.2018390087

T2紫铜-45钢电子束焊双材料界面性能与裂纹偏转

Study on interfacial properties and crack deflection of the T2 copper-45 steel bimaterial

  • 摘要: 焊接接头性能与缺陷一直是焊接材料相关课题的重要方面,大量的研究描述了焊接材料的接头性能与特征,但异种焊接材料的界面与开裂问题研究并不充分. 文中对T2紫铜-C45钢电子束焊接双材料界面强度和裂纹开裂的问题,首先采用标准拉伸和三点弯曲试验,得到该材料焊缝区抗拉强度、屈服强度、弹性模量参数,并依此计算判断出断裂韧性值;其次对拉伸和三点弯曲试验试样的宏观和微观断口分析,表征其断口形貌特征,得出断口断裂类型为准解理和沿晶脆性复合断裂模式;基于试验分析结果对裂纹开裂偏转路径进行讨论,得出裂纹沿焊缝区扩展并偏向T2紫铜端;最后以实测参数为基准,基于ABAQUS有限元分析得出三点弯曲试验下焊缝区的裂纹扩展和偏转方向结果,为该种异种金属焊接材料接头性能的提升提供了依据.
    Abstract: The performance and flaw of welded joint have always been important aspects of the welding material on this subject. A lot of research has described the performance and characteristics of welding joint materials, but the research about interface of dissimilar welding material and cracking problems is not sufficient. The project is focused on solving the problems of interface strength, microscopic mechanism and crack initiation of the T2 copper-45 steel bimaterial. The four-step measurement starts with using standard tensile and three-point bending experiment to calculate ultimate strength, yield strength and elastic modulus for fracture toughness. The macro/micro fracture morphology of tensile and three-point bending experiment are analyzed, characterizing the fracture surface morphology characteristics. It can be concluded that the fracture types of fracture are quasi-cleavage and intergranular brittle fracture mixed model. The deflection path of crack initiation is discussed and the crack is extended along the weld area and titled towards the T2-copper. Finally, based on experimental testing parameters and ABAQUS finite element analysis, crack propagation and deflecting direction of three point bending test result provide the basis for the improvement of the welded joint performance.
  • [1] Kar J, Roy S K, Roy G G. Effect of beam oscillation on electron beam welding of copper with AISI-304 stainless steel[J]. Journal of Materials Processing Technology, 2016, 233: 174-185.[2] Wei P S, Chung F K. Unsteadymarangoni flow in a molten pool when welding dissimilar metals[J]. Metallurgical and Materials Transactions B, 2000, 31(6):1387-1403.[3] Blouin A, Chapuliot S, Marie S, et al. Brittle fracture analysis of dissimilar metal welds[J]. Engineering Fracture Mechanics, 2014, 131: 58-73.[4] Gilles P, Brosse A, Pignol M. Simulation of ductile tearing in a dissimilar material weld up to pipe wall break-through[C]∥ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference, American Society of Mechanical Engineers, 2010: 509-517.[5] Samal M K, Seidenfuss M, Roos E, et al. Investigation of failure behavior of ferritic-austenitic type of dissimilar steel welded joints[J]. Engineering Failure Analysis, 2011, 18(3): 999-1008.[6] Faidy C. Structural integrity of bi-metallic welds in piping fracture testing and analysis[C]∥ASME 2008 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, 2008: 191-200.[7] Nicak T, Schendzielorz H, Keim E, et al. STYLE: Study on transferability of fracture material properties from small scale specimens to a real component[C]∥ASME 2011 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, 2011: 313-322.[8] Motamedi D, Mohammadi S. Dynamic crack propagation analysis of orthotropic media by the extended finite element method[J]. International Journal of Fracture, 2010, 161(1): 21-39.[9] Turichin G A, Klimova O G, Babkin K D, et al. Effect of thermal and diffusion processes on formation of the structure of weld metal in laser welding of dissimilar materials[J]. Metal Science and Heat Treatment, 2014, 55(9-10): 569-574.[10] 唐振云, 马英杰, 毛智勇, 等. TC4-DT电子束焊接头显微组织及疲劳裂纹扩展行为[J]. 焊接学报, 2012, 33(9): 109-112.Tang Zhenyun, Ma Yingjie, Mao Zhiyong, et al. Microstructure and fatigue crack growth behavior of electron beam welded joints for TC4-DT titanium alloy[J]. Transactions of the China Welding Institution, 2012, 33(9): 109-112.[11] 赵 健. 电子束填丝焊接熔化过渡行为及铜/钢焊接研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
计量
  • 文章访问数:  862
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-01

目录

    /

    返回文章
    返回