高级检索

2219铝合金直流正极性A-TIG焊接技术

栗慧1,2,邹家生1,姚君山2,曲文卿3

栗慧1,2,邹家生1,姚君山2,曲文卿3. 2219铝合金直流正极性A-TIG焊接技术[J]. 焊接学报, 2018, 39(3): 89-93,116. DOI: 10.12073/j.hjxb.2018390075
引用本文: 栗慧1,2,邹家生1,姚君山2,曲文卿3. 2219铝合金直流正极性A-TIG焊接技术[J]. 焊接学报, 2018, 39(3): 89-93,116. DOI: 10.12073/j.hjxb.2018390075
LI Hui1,2, ZOU Jiasheng1, YAO Junshan2, QU Wenqing3. Direct current straight polarity A-TIG welding technology of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 89-93,116. DOI: 10.12073/j.hjxb.2018390075
Citation: LI Hui1,2, ZOU Jiasheng1, YAO Junshan2, QU Wenqing3. Direct current straight polarity A-TIG welding technology of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 89-93,116. DOI: 10.12073/j.hjxb.2018390075

2219铝合金直流正极性A-TIG焊接技术

Direct current straight polarity A-TIG welding technology of 2219 aluminum alloy

  • 摘要: 提出了一种用于2219铝合金焊接的新方法,焊前在待焊表面预先涂敷一层除气去膜活性剂,实现了2219铝合金的直流正极性焊接. 研究不同的活性剂浓度对2219铝合金直流正极性活性TIG焊(A-TIG)焊缝表面成形、气孔缺陷、微观组织以及力学性能的影响. 结果表明,当活性剂浓度为10%时可以获得无气孔缺陷、表面成形和力学性能良好的2219铝合金直流A-TIG焊缝. 与变极性TIG焊相比,焊接过程电弧稳定性好,热输入小,焊缝质量优异.
    Abstract: A new welding method was proposed innovatively for joining 2219 aluminum alloy. The welding surface was coated with a thin layer of activating flux with a function of removing the oxide film and gas before welding. And direct current straight polarity TIG welding method of 2219 aluminum alloy was obtained. This paper investigated the effect of activating flux concentration on the weld surface appearance, porosity defect, microstructure and mechanical properties of 2219 aluminum alloy joints by direct current straight polarity A-TIG welding. The results showed that the 2219 aluminum joint with pore-free, sound surface appearance and excellent mechanical properties was obtained when the activating flux concentration was up to 10%. Compared with the variable polarity TIG welding, direct current straight polarity A-TIG welding presented better arc stability, less heat input, more excellent welding quality.
  • [1] Immarigeon J P, Holt R T, Koul A K,et al. Light weight materials for aircraft applications[J]. Materials Characterization, 1995, 35(1): 41-67.[2] 刘志华, 赵 兵, 赵 青. 21世纪航天工业铝合金焊接工艺技术展望[J]. 导弹与航天运载技术, 2002(5): 63-65.Liu Zhihua, Zhao Bing, Zhao Qing. Prospects forwelding technology of aluminum alloy in aerospace industry in 21st century[J]. Missiles and Space Vehicles, 2002(5): 63-65.[3] 周万盛, 姚君山. 铝及铝合金的焊接 第1版[M]. 北京: 机械工业出版社, 2006.[4] 黄 勇, 樊 丁, 邵 锋. 活性剂增加铝合金交流FZ-TIG焊熔深机理[J]. 机械工程学报, 2010, 46(16): 113-118.Huang Yong, Fan Ding, Shao Feng. Mechanism of activating fluxes increasing weld penetration of AC FZ-TIG welding for aluminum alloys[J]. Journal of Mechanical Engineering, 2010, 46(16): 113-118.[5] 严 铿, 高莉华, 杨 刚, 等. 单组分活性剂对铝合金A-TIG焊焊缝的影响[J]. 焊接学报, 2013, 34(2): 55-62.Yan Keng, Gao Lihua, Yang Gang,et al. Effect of single-component activating flux on weld morphologies in A-TIG welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2013, 34(2): 55-62.[6] 严 铿, 杨 刚, 赵 勇, 等. 铝合金A-TIG焊电弧光谱分析[J]. 焊接学报, 2012, 33(3): 73-76,105.Yan Keng, Yang Gang, Zhao Yong,et al. Spectrum analysis of A-TIG welding for aluminum alloy[J]. Transactions of the China Welding Institution, 2012, 33(3): 73-76, 105.[7] 陈 俐, 胡伦骥, 巩水利. 活性剂焊接技术研究[J]. 新技术新工艺, 2005(4): 39-41.Chen Li, Hu Lunji, Gong Shuili. Research on welding with active flux[J]. New Technology & New Process, 2005(4): 39-41.[8] Arivazhagan B, Vasudevan M. Studies on A-TIG welding of 2.25Cr-1Mo (P22) steel[J]. Journal of Manufacturing Processes, 2015, 18: 55-59.[9] Srirangan A K, Paulraj S. Experimental investigation of the A-TIG welding process of Incoloy 800H[J]. Materials and Manufacturing Processes, 2015, 30: 1154-1159.[10] Vishnuvaradhan, Chandrasekhar N, Vasudevan M,et al. Intelligent modeling using adaptive neuro fuzzy inference system (ANFIS) for predicting weld bead shape parameters during A-TIG welding of reduced activation ferritic-Martensitic (RAFM) Steel[J]. Transactions of the Indian Institute of Metals, 2013, 66(1): 57-63.[11] Nanda N K, Balasubramanian K R, Vasudevan M. Finite element simulation of A-TIG welding of duplex stainless steel 2205 using sysweld[J]. Applied Mechanics and Materials, 2014, 592-594: 374-379.[12] 王林志. 活性剂对AZ31镁合金钨极氩弧焊和激光焊接接头微观组织和力学性能的影响[D]. 重庆: 重庆大学, 2011.[13] 刘凤尧, 林三宝, 杨春利, 等. TIG焊活性剂对焊缝成形的影响[J]. 焊接学报, 2002, 23(1): 1-4.Liu Fengyao, Lin Sanbao, Yang Chunli,et al. Effect of activating fluxes on weld form in TIG welding of stainless steel and titanium alloy[J]. Transactions of the China Welding Institution, 2002, 23(1): 1-4.[14] 吴飞虎. 钛合金的A-TIG焊活性剂的研制[D]. 兰州: 兰州理工大学, 2011.[15] 黄 勇, 樊 丁, 樊清华. 活性剂增加铝合金交流A-TIG焊熔深机理研究[J]. 机械工程学报, 2006, 42(5): 45-49.Huang Yong, Fan Ding, Fan Qinghua. Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy[J]. Chinese Journal of Mchanical Engineering, 2006, 42(5): 45-49.[][][16] 张志勇, 张晓牧, 彭 云, 等. 高强度铝合金厚板焊接气孔形态分析及混合保护气体效应[J]. 焊接, 2004(7): 13-15.Zhang Zhiyong, Zhang Xiaomu, Peng Yun,et al. Analysis of porosity characteristics in weld metal of high strength aluminum alloy thick plate and effect of mixed protective gas[J]. Welding & Joining, 2004(7): 13-15.
  • 期刊类型引用(13)

    1. 王梦真,万占东,林健. 电弧增材制造工艺及数值仿真研究进展. 大型铸锻件. 2024(01): 7-12 . 百度学术
    2. 周志杰,池元清,蔡舒鹏,张琪,唐雪松,张永康. 应力迭代法重构电弧增材AA7075铝合金薄壁件残余应力场研究. 计算机集成制造系统. 2024(03): 1127-1137 . 百度学术
    3. 李坤,左春林,廖若冰,吉辰,蒋斌,潘复生. 增材制造铝合金残余应力研究现状及展望. 航空学报. 2024(12): 6-30 . 百度学术
    4. 曹流,朱民富,李峻荣,张沁丹. 基于连续逐层添加的金属增材制造热-力耦合行为数值模拟研究. 铸造. 2024(08): 1065-1072 . 百度学术
    5. 肖罡,张喜龙,项菲菲,郭鹏程,项忠珂,杨钦文. 选区激光熔化Al-Mg-Sc-Zr铝合金成形过程数值模拟. 塑性工程学报. 2024(11): 112-122 . 百度学术
    6. 夏玉峰,滕海灏,张雪,郑德宇,权国政. Ti-6Al-4V合金电弧熔丝增材的组织性能研究进展. 重庆大学学报. 2022(04): 87-99 . 百度学术
    7. 李岩,苏辰,张冀翔. 电弧熔丝增材制造综述:物理过程、研究现状、应用情况及发展趋势. 机械制造文摘(焊接分册). 2022(01): 14-20 . 百度学术
    8. 王强,贾金龙,苏振,康举,赵玥,吴爱萍. 铝合金WAAM筒形构件变形演变的有限元计算. 焊接技术. 2022(04): 1-6+113 . 百度学术
    9. 权国政,杨焜,盛雪,余炎泽. 电弧熔丝增材制造残余应力控制方法综述. 塑性工程学报. 2021(11): 1-10 . 百度学术
    10. 李春凤,肖笑,尹玉祥,李晨,张柯柯. TIG电弧增材熔池行为的数值模拟研究现状. 材料热处理学报. 2020(07): 25-32 . 百度学术
    11. 赵鹏康,唐成,蒲尊严,李言,李淑娟. TIG电弧增材制造5356铝合金微观组织与拉伸性能. 焊接学报. 2020(05): 65-70+77+101 . 本站查看
    12. 王浩宇,荣鹏,徐伟伟,高川云,虞文军,庞盛永. 飞机栅格零件SLM成形过程的变形演化仿真研究. 航空制造技术. 2020(22): 70-75 . 百度学术
    13. 李岩,苏辰,张冀翔. 电弧熔丝增材制造综述:物理过程、研究现状、应用情况及发展趋势. 焊接. 2020(09): 31-37+63 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  729
  • HTML全文浏览量:  7
  • PDF下载量:  5
  • 被引次数: 27
出版历程
  • 收稿日期:  2016-08-15

目录

    /

    返回文章
    返回