感应加热辅助原位合成Ti3SiC2连接SiC陶瓷
Joining of SiC ceramics by induction heated combustion synthesis of Ti3SiC2
-
摘要: 采用感应加热的方式引燃Ti-Si-C(摩尔比3∶1∶2)及Ti-Si-C-Al(摩尔比3∶1∶2∶0.1)体系的自蔓延燃烧反应并实现了SiC陶瓷间的连接. 通过对不同工艺参数下生成产物中Ti3SiC2相的相对含量的分析,初步优选出最佳工艺参数为50 A感应电流下加热、30 A感应电流下保温30 min以及1 MPa的连接压力,得到的SiC/TSC/SiC和SiC/TSC-Al/SiC接头平均抗剪强度分别为32.9和66.8 MPa. 微观结构和成分分析的结果表明,SiC/TSC/SiC及SiC/TSC-Al/SiC接头处均显示出良好的界面结合,无明显气孔或裂纹等缺陷.XRD的物相分析结果表明,SiC/TSC-Al/SiC接头的中间层产物中主要含有Ti3SiC2相及少量TiC和Ti-Si的化合物;而SiC/TSC/SiC接头则主要以TiC为主,这就导致了前者的平均抗剪强度超过了后者的两倍.Abstract: Induction heating has been utilized to ignited the Self-Propagating High-Temperature Synthesis of Ti-Si-C(3∶1∶2 molar ratio)and Ti-Si-C-Al(3∶1∶2∶0.1 molar ratio)and SiC ceramics was joined by the induction heated combustion synthesis. From the perspective of the effect of processing parameters on the relative contents of Ti3SiC2phase in the synthesized products, the optimized processing parameters were preliminarily obtained: induction heating current of 50 A,holding current of 30 A for 30 minutes and joining pressure of 1 MPa. The shear strength of SiC/TSC/SiC and SiC/TSC-Al/SiC joints obtained by the optimized processing parameters were 32.9 and 66.8 MPa, respectively. The results of microstructural and component analysis showed that no obvious pores or cracks were detected from the SiC/TSC/SiC and SiC/TSC-Al/SiC interfaces. The results from XRD analysis revealed that the synthesized products mainly consisted of Ti3SiC2, little of TiC and Ti-Si compounds in the SiC/TSC-Al/SiC joint. And the contents of TiC phase were dominant in the SiC/TSC/SiC joint, which resulted in the average shear strength of the SiC/TSC-Al/SiC joint more than twice of the SiC/TSC/SiC joint.
-
-
[1] Hitoshi H, Zhengming S, Shuji T. Morphological evolution during reaction sintering of Ti, SiC and C powder blend[J]. Journal of Alloys and Compounds, 2007, 441: 174-180.[2] 闫文青, 桂赤斌, 戴 乐. TIG熔敷Ti-Si-C系统在Ti-5Al-2.5Sn表面形成陶瓷涂层的化学反应分析[J]. 焊接学报, 2014, 35(10): 77-80.Yan Wengqing, Gui Chibin, Dai Le. Chemical reaction of ceramics coating of Ti-Si-C system on Ti-5Al-2.5Sn substrate prepared by tungsten inert-gas arc cladding[J]. Transactions of the China Welding Institution, 2014, 35(10): 77-80.[3] Qing H, Renduo L, Guanhong L,et al. Irradiation resistance of MAX phases Ti3SiC2and Ti3AlC2: Characterization and comparison[J]. Journal of Nuclear Materials, 2015, 465: 640-647.[4] 董红英, 李树杰, 贺跃辉. 用Ti3SiC2粉料连接反应烧结SiC陶瓷[J]. 中国有色金属学报, 2005, 15(7): 1051-1056.Dong Hongying, Li Shujie, He Yuehui. Joining of reaction bonded SiC ceramic using Ti3SiC2powder as filler[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(7): 1051-1056.[5] Dong H, Li S J, Teng Y Y,et al. Joining of SiC ceramic-based materials with ternary carbide Ti3SiC2[J]. Materials Science and Engineering: B, 2011, 176(1): 60-64.[6] Zhou X, Han Y H, Shen X F,et al. Fast joining SiC ceramics with Ti3SiC2tape film by electric field-assisted sintering technology[J]. Journal of Nuclear Materials, 2015, 466: 322-327.[7] Jiménez C, Mergia K, Lagos M,et al. Joining of ceramic matrix composites to high temperature ceramics for thermal protection systems[J]. Journal of European Ceramic Society, 2016, 36(3): 443-449.[8] Rosa R, Veronesi P, Leonelli C,et al. Microwave activated combustion synthesis and compaction in separate E and H fields: numerical simulation and experimental results[J]. Advances in Science and Technology, 2011, 63: 197-202.[9] Rosa R, Veronesi P, Han S,et al. Microwave assisted combustion synthesis in the system Ti-Si-C for the joining of SiC: experimental and numerical simulation results[J]. Journal of the European Ceramic Society, 2013, 33(10): 1707-1719.[10] Radhakrishnan R, Williams J, Akinc J. Synthesis and high-temperature stability of Ti3SiC2[J]. Journal of Alloys and Compounds, 1999, 285(1-2): 85-88.[11] 闫文青, 张建强, 刘 升. 氩弧熔敷Ti-Si-C系陶瓷涂层中物相的热力学预测[J]. 焊接学报, 2017, 38(5): 108-111.Yan Wengqing, Zhang Jianqiang, Liu Sheng. Thermodynamic prediction for phases of ceramic coatings in Ti-Si-C system by argon arc depositing[J]. Transactions of the China Welding Institution, 2017, 38(5): 108-111.[12] 熊进辉, 黄继华, 张 华, 等. Cf/SiC复合材料与钛合金Ag-Cu-Ti-Cf复合钎焊[J]. 焊接学报, 2010, 31(5): 77-80.Xiong Jinhui, Huang Jihua, Zhang Hua,et al. Brazing of Cf/SiC composite to Ti alloy with Ag-Cu-Ti-Cfcomposite filler[J]. Transactions of the China Welding Institution, 2010, 31(5): 77-80. -
期刊类型引用(10)
1. 赵雅,刘燕,陈安忠,高仁强,李照国,任娟红. 稳定化元素对443铁素体不锈钢组织和性能的影响. 热加工工艺. 2024(21): 158-161+165 . 百度学术
2. 成培鑫,席锦会,刘姣,石立超,张健健. TA18钛合金管惯性摩擦焊接头组织与性能. 钢铁钒钛. 2024(06): 74-79 . 百度学术
3. 傅田,赵国际. 采用Cu中间层的Ti6242钛合金接触反应钎焊. 兵器材料科学与工程. 2022(02): 65-70 . 百度学术
4. 隋楠,周毅,张明达,曹京霞,黄旭. Ti6242钛合金电子束焊接接头组织和力学性能. 航空制造技术. 2022(15): 103-110 . 百度学术
5. 韩秀峰,王伦,朱明亮,廖仲祥,张露. TA19钛合金电子束焊接头微观组织与性能研究. 稀有金属. 2021(07): 778-785 . 百度学术
6. 赵张龙,宋旭阳,曹澜川,徐文馨,姚泽坤,郭鸿镇. 等温变形对惯性摩擦焊IMI834/Ti6246双钛合金组织与性能的影响. 稀有金属材料与工程. 2020(07): 2388-2392 . 百度学术
7. 席锦会,葛鹏,侯鹏. 连续驱动摩擦焊制备钛合金管件. 焊接. 2020(09): 47-51+64 . 百度学术
8. 刘全明,龙伟民,傅莉,钟素娟,李秀朋. 氢致TA10钛合金焊接接头拉伸性能演变. 焊接学报. 2020(12): 20-24+98 . 本站查看
9. Yanquan Wu,Chunbo Zhang,Jun Zhou,Wu Liang,Yunlei Li. Analysis of the Microstructure and Mechanical Properties during Inertia Friction Welding of the Near-α TA19 Titanium Alloy. Chinese Journal of Mechanical Engineering. 2020(06): 215-227 . 必应学术
10. 张春波,周军,张露,张国栋,张永强. GH4169合金与FGH96合金惯性摩擦焊接头组织和力学性能. 焊接学报. 2019(06): 40-45+162-163 . 本站查看
其他类型引用(3)
计量
- 文章访问数: 534
- HTML全文浏览量: 17
- PDF下载量: 4
- 被引次数: 13