高级检索

TIG焊电弧辅助MIG焊引弧过程分析与机理探讨

汤莹莹1,朱志明1,2,杨中宇1,符平坡1

汤莹莹1,朱志明1,2,杨中宇1,符平坡1. TIG焊电弧辅助MIG焊引弧过程分析与机理探讨[J]. 焊接学报, 2018, 39(3): 21-25. DOI: 10.12073/j.hjxb.2018390061
引用本文: 汤莹莹1,朱志明1,2,杨中宇1,符平坡1. TIG焊电弧辅助MIG焊引弧过程分析与机理探讨[J]. 焊接学报, 2018, 39(3): 21-25. DOI: 10.12073/j.hjxb.2018390061
TANG Yingying1, ZHU Zhiming1,2, YANG Zhongyu1, FU Pingpo1. Process analysis and mechanism discussion of MIG arc ignition assisted by TIG arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 21-25. DOI: 10.12073/j.hjxb.2018390061
Citation: TANG Yingying1, ZHU Zhiming1,2, YANG Zhongyu1, FU Pingpo1. Process analysis and mechanism discussion of MIG arc ignition assisted by TIG arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 21-25. DOI: 10.12073/j.hjxb.2018390061

TIG焊电弧辅助MIG焊引弧过程分析与机理探讨

Process analysis and mechanism discussion of MIG arc ignition assisted by TIG arc

  • 摘要: 在TIG-MIG复合焊中,先引燃的TIG焊电弧能够辅助MIG焊实现非接触引弧,且在整个非接触引弧过程中不产生焊接飞溅. 利用电信号与高速摄像同步采集系统获取MIG焊引弧过程的电弧电压、焊接电流和电弧图像,研究了先引燃的TIG焊电弧及其参数变化对MIG焊引弧过程及引弧方式的影响. 结果表明,细长放电通道形成于MIG焊丝末端与TIG焊电弧之间是TIG焊电弧辅助MIG焊实现非接触引弧的关键;TIG焊电弧辅助MIG焊实现非接触引弧对TIG焊接参数的变化具有良好的适应性. 此外,基于气体间隙击穿的流注理论,探讨了细长放电通道的形成过程,揭示了TIG焊电弧辅助MIG焊实现非接触引弧的机理.
    Abstract: In the TIG-MIG hybrid welding, the first ignited TIG arc can assist MIG welding to achieve the non-contact arc ignition. And no welding spatter was produced during the whole process of non-contact arc ignition. The arc voltage, welding current and arc images during the process of the MIG arc ignition were acquired by a synchronous acquisition system of electrical signals and high-speed video, then the effect of the first ignited TIG arc and the parameters variation on the MIG arc ignition process and ignition modes was studied. The results showed that the critical point to realize the non-contact ignition of MIG arc with the assistance of the TIG arc was the filamentary discharge channel formed between the MIG wire tip and the TIG arc. The non-contact ignition of MIG arc with the assistance of the TIG arc presented good adaptability to the variation of TIG welding parameters. In addition, based on the streamer theory of gas gap breakdown, the formation of filamentary discharge channel was discussed, and thereby the mechanism of realizing the non-contact ignition of MIG arc with the assistance of the TIG arc was revealed.
  • [1] Kanemaru S, Sasaki T, Sato T. Hybrid welding method and welding torch for hybrid welding: USA, 20130299463[P]. 2013-02-08.[2] Kanemaru S, Sasaki T, Sato T,et al. Study for TIG-MIG hybrid welding process[J]. Welding in the World, 2014, 58(1): 11-18.[3] 金丸周平, 佐々木智章, 佐藤豊幸,et al. TIG-MIG複合溶接法の三次元モデル数値解析[C]∥溶接学会. 溶接学会論文集. 日本: 溶接学会, 2012, 30: 306-312.[4] 娄小飞, 陈茂爱, 武传松, 等. 高速TIG-MIG复合焊焊缝驼峰及咬边消除机理[J]. 焊接学报, 2014, 35(8): 87-90.Lou Xiaofei, Chen Maoai, Wu Chuansong,et al. Humping and undercutting suppression mechanism for high speed TIG-MIG hybrid welding[J]. Transactions of the China Welding Institution, 2014, 35(8): 87-90.[5] 杨 涛, 张生虎, 高洪明, 等. TIG-MIG复合焊电弧特性机理分析[J]. 焊接学报, 2012, 33(7): 25-28.Yang Tao, Zhang Shenghu, Gao Hongming,et al. Analysis of mechanism for TIG-MIG hybrid arc properties[J]. Transactions of the China Welding Institution, 2012, 33(7): 25-28.[6] 耿 正, 汤姆诺斯. 改善GMAW引弧过程降低短焊缝焊接飞溅[C]∥中国机械工程学会及其焊接学会. 汽车焊接国际论坛论文集. 北京: 机械工业出版社, 2003: 264-270.[7] Ersoy U, Hu S J, Kannatey-Asibu E. Observation of arc start instability and spatter generation in GMAW[J]. Welding Journal, 2008, 87(2): 51-56.[8] 梁曦东, 周远翔, 曾 嵘, 等. 高电压工程[M]. 北京: 清华大学出版社, 2003.[9] 库弗尔, 岑格尔. 高电压工程基础[M]. 邱毓昌, 戚庆成 译. 北京: 机械工业出版社, 1993.[10] 李亮玉, 张广军. 焊接电弧引弧机理的探讨[J]. 焊接学报, 1997, 18(4): 238-243.Li Liangyu, Zhang Guangjun. Mechanism of starting arc in welding[J]. Transactions of the China Welding Institution, 1997, 18(4): 238-243.[11] Meek J M. A theory of spark discharge[J]. Physical Review, 1940, 57(8): 722-728.
  • 期刊类型引用(3)

    1. 田晓羽,张志伟,周晨,赵连清,田洋光,付伟,宋晓国. 钎焊温度对BNi-2非晶钎料钎焊1Cr18Ni9Ti不锈钢组织和性能的影响. 焊接学报. 2024(06): 61-67 . 本站查看
    2. 李姗珊,李晓延,张伟栋,杨刚力,张虎. 不同取向Cu/Cu_3Sn界面处原子扩散行为的分子动力学模拟. 电子元件与材料. 2023(04): 467-475 . 百度学术
    3. 任二花,李晓延,张虎,韩旭. 空位对Cu/Sn焊点中Cu_3Sn层元素扩散的影响. 电子元件与材料. 2022(04): 381-386 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  740
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 5
出版历程
  • 收稿日期:  2016-10-23

目录

    /

    返回文章
    返回