高级检索

压缩机叶片激光再制造成形闭环控制设计与实现

任维彬1,2,董世运2,徐滨士2,周金宇1,王玉江2

任维彬1,2,董世运2,徐滨士2,周金宇1,王玉江2. 压缩机叶片激光再制造成形闭环控制设计与实现[J]. 焊接学报, 2018, 39(3): 11-15. DOI: 10.12073/j.hjxb.2018390059
引用本文: 任维彬1,2,董世运2,徐滨士2,周金宇1,王玉江2. 压缩机叶片激光再制造成形闭环控制设计与实现[J]. 焊接学报, 2018, 39(3): 11-15. DOI: 10.12073/j.hjxb.2018390059
REN Weibin1,2, DONG Shiyun2, XU Binshi2, ZHOU Jinyu1, WANG Yujiang2. Design and implementation of laser refabrication forming closed-loop controlling for compressor blade[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 11-15. DOI: 10.12073/j.hjxb.2018390059
Citation: REN Weibin1,2, DONG Shiyun2, XU Binshi2, ZHOU Jinyu1, WANG Yujiang2. Design and implementation of laser refabrication forming closed-loop controlling for compressor blade[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 11-15. DOI: 10.12073/j.hjxb.2018390059

压缩机叶片激光再制造成形闭环控制设计与实现

Design and implementation of laser refabrication forming closed-loop controlling for compressor blade

  • 摘要: 针对压缩机叶片激光再制造成形精度要求高、形状及形变控制难度大以及成形过程自动化、智能化水平低的工程实际情况,以边部非规则体积损伤压缩机薄壁叶片成形为目标,设计并实现了叶片激光再制造成形闭环控制系统,实现了形状及形变尺寸的闭环监测和激光功率的在线调节,开展了体积损伤薄壁叶片的激光再制造成形闭环控制. 试验结果表明, 叶片形状恢复充分,表层无裂纹,系统尺寸监测精度可达0.1 mm,系统参数反馈周期为0.5 s,采样频率为2 Hz.
    Abstract: Aiming at the high precision in forming demand, the high difficulty in shape and deformation controlling and the low level of intelligence of the engineering application, the laser refabrication forming closed-loop controlling system was designed and implemented to achieve the goal of the thin-wall compressor blade forming with volume damage on the edge. The system obtained the closed loop monitoring of the dimension and deformation dimension, and on-line regulating the laser power. The laser refabrication forming experiment of thin-wall blade was conducted. The result showed that the shape recovery was full and on cracks existed in the surface. The system monitor precision for dimension could reach 1 mm. And the feedback loop and sampling frequency were up to 0.5 s and 2 Hz, respectively.
  • [1] 戴士杰, 张 熠, 王志平, 等. 基于NURBS 的航空发动机叶片焊接修复的轨迹规划[J]. 焊接学报, 2015, 36(1): 23-26.Dai Shijie, Zhang Yi, Wang Zhiping,et al. Trajectory planning of welded repair for aero-engine blades based on NURBS curve[J]. Transactions of the China Welding Institution, 2015, 36(1): 23-26.[2] 姬书德, 方洪渊, 刘雪松, 等. 叶片的应力状态对混流式水轮机转轮失效的影响[J]. 焊接学报, 2005, 26(2): 52-56.Ji Shude, Fang Hongyuan, Liu Xuesong,et al. Influence of blade stress state on invalidation of francis turbine runner[J]. Transactions of the China Welding Institution, 2005, 26(2): 52-56.[3] 杜 兵, 孙凤莲, 徐玉君, 等. 焊接方法对超低碳马氏体不锈钢焊丝熔敷金属冲击韧性的影响[J]. 焊接学报, 2014, 35(8):1-4.Du Bing, Sun Fenglian, Xu Yujun,et al. Effect of welding methods on impact toughness of ultra-low carbon martensitic stainless steel welding wire deposited metal[J]. Transactions of the China Welding Institution, 2014, 35(8): 1-4.[4] Lee B, Suh J, Lee H,et al. Investigations on fretting fatigue in aircraft engine compressor blade[J]. Engineering Failure Analysis, 2011, 18(7): 1900-1908.[5] Farrhi G H, Tirehdast M, Masoumi K A,et al. Failure analysis of a gas turbine compressor[J]. Engineering Failure Analysis, 2011, 18(1): 474-484.[6] 赵彦华. KMN钢压缩机叶片激光熔覆修复及后续加工特性研究[D]. 济南: 山东大学, 2015.[7] 钱 玲, 吴玉萍, 郭文敏, 等. 高速电弧喷涂 FeNiCrAl/Cr3C2涂层的高温氧化性能和氧化机理[J]. 焊接学报, 2015, 36(2): 83-87.Qian Ling, Wu Yuping, Guo Wenmin,et al. High temperature oxidation resistance and oxidation mechanism of FeNiCrAl/Cr3C2composite coating deposited by high velocity arc spraying[J]. Transactions of the China Welding Institution, 2015, 36(2): 83-87.[8] 王智慧, 王 虎, 贺定勇, 等. 等离子熔覆CoCrCuFeNiMn高熵合金组织研究[J]. 稀有金属材料与工程, 2015, 44(3): 644-648.Wang Zhihui, Wang Hu, He Dingyong,et al. Microstructure characterization of CoCrCuFeNiMn high entropy alloys by plasma cladding[J]. Rare Metal Materials and Engineering, 2015, 44(3): 644-648.[9] 任维彬, 董世运, 徐滨士, 等. 连续/脉冲激光再制造FeCrNiCu合金成形层温度场研究[J]. 材料工程, 2017, 45(5): 1-6.Ren Weibin, Dong Shiyun, Xu Binshi,et al. Temperature field of FeCrNiCu alloy forming layers of continous wave/pulsed laser remanufacture[J]. Journal of Material Engineering, 2017, 45(5): 1-6.[10] Guo Shirui, Shang Huichao, Cui Lujun,et al. Effects of laser cladding layers width on total indicated runout characteristics of steam turbine rotor surface[J]. Rare Metal Materials and Engineering, 2017, 46(3): 612-616.[11] 成 诚. 激光再制造镍基高温合金工艺及其高温拉伸性能的研究[D]. 南京: 南京航空航天大学, 2016.[12] 任维彬, 董世运, 徐滨士, 等. FV520(B)钢叶片激光再制造动态形变规律及试验优化[J]. 哈尔滨工业大学学报, 2017, 49(5): 173-177.Ren Weibin, Dong Shiyun, Xu Binshi,et al. Dynamic deformation and experimental optimization of FV520(B) steel blade for laser remanufacture[J]. Journal of Harbin Institute of Technology, 2017, 49(5): 173-177.[13] 闫世兴, 董世运, 徐滨士, 等. Fe314合金粉末激光快速成形组织与力学性能分析[J]. 中国激光, 2009, 36(11): 3074-3078.Yan Shixing, Dong Shiyun, Xu Binshi,et al. Analysis of Mechanical properties and microstructures of laser rapid forming components with Fe314 alloy powders[J]. Chinese Journal of Lasers, 2009, 36(11): 3074-3078.[14] 朱亚南. 关于阶梯形件激光熔覆再制造工艺设计及应用研究[D]. 秦皇岛: 燕山大学, 2016.[15] 朱晓鹏. 激光熔覆再制造过程中的分层切片方法[D]. 上海: 上海交通大学, 2013.[16] 杨晓红, 杭文先, 秦绍刚, 等. H13钢激光熔覆钴基复合涂层的组织及耐磨性[J].吉林大学学报(工学版), 2017, 47(3): 891-899.Yang Xiaohong, Hang Wenxian, Qin Shaogang,et al. Microstructure and wear properties of Co-based composite coatings on H13 steel surface by laser cladding[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(3): 891-899.[17] Radovan K, Syed H, Yildirim H,et al. Thermo-kineticand-structural modeling and experimental investigations of laser power deposition process[D]. Lyle School of Engineering Southern Methodist University, Dallas Texas, 2009.[18] Almir H, Anna-Karin C, Mattias O,et al. Increased stability in laser metal wire deposition through feedback from optical measurements[J]. Optics and Lasers in Engineering, 2010, 48(6): 478-485.[19] 冯其波. 光学测量技术与应用[M]. 北京: 清华大学出版社, 2010.[20] 李中伟, 王从军, 周 钢. 面结构光测量技术[M]. 武汉: 华中科技大学出版社, 2012.[21] 任维彬, 董世运, 徐滨士, 等. FV520(B)钢叶片模拟件激光再制造成形试验分析[J]. 红外与激光工程, 2014, 43(10): 3303-3308.Ren Weibin, Dong Shiyun, Xu Binshi,et al. Experimental analysis of laser remanufacturing for FV520(B) steel blade simulator[J]. Infrared and Laser Engineering, 2014, 43(10): 3303-3308.
  • 期刊类型引用(20)

    1. 马霄锋,杨冠华,高超,钮旭晶,王玮彤. 6005A-T6铝合金对搭接FSW接头微观组织与力学性能. 焊接技术. 2025(03): 8-13+145 . 百度学术
    2. 邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 . 百度学术
    3. 蹇文轩,丛孟启,雷卫宁. 基于搅拌摩擦加工技术的镁基复合材料研究进展. 机械工程学报. 2024(08): 48-64 . 百度学术
    4. 冯家铖,宫文彪,鞠川,李于朋,孙雨萌,朱芮. 2024铝合金双轴肩搅拌摩擦焊接头热循环及组织特征. 吉林大学学报(工学版). 2024(11): 3184-3191 . 百度学术
    5. 邓建峰,郭伟强,徐晓霞,王博,灰辉,窦思忠,黄望业. Comprehensive study of microstructure and mechanical properties of friction stir welded 5182-O/HC260YD + Z lap joint. China Welding. 2023(01): 46-52 . 百度学术
    6. 谢宇,李兴帅,付炳欣. 轨道交通铝合金车体双轴肩搅拌摩擦焊研究现状与展望. 机车车辆工艺. 2023(03): 18-20+28 . 百度学术
    7. 尹德猛,李充,姚肖洁,郝文波,王崴,杨彦龙. 6082-T6铝合金双轴肩搅拌摩擦焊接头成形及力学性能. 焊接. 2023(06): 38-43 . 百度学术
    8. 鲁克锋,殷凤仕,王文宇,滕涛,樊世冲,刘亚凡,王鸿琪,朱建,任智强. 铝合金搅拌摩擦焊接头缺陷及焊件结构问题控制策略的研究进展. 表面技术. 2023(07): 55-79 . 百度学术
    9. 温泉,李文亚,吴雪猛,任寿伟,赵静. AA6056双轴肩搅拌摩擦焊接头非均匀性分析. 焊接学报. 2023(09): 88-94+134 . 本站查看
    10. 马佳良,曾泽群,孙屹博,杨鑫华. 工艺参数对铝合金搅拌摩擦焊变形和残余应力的影响及优化. 焊接技术. 2022(01): 46-52+114 . 百度学术
    11. 张颖川,马国栋,代鹏,王敬水,金炜. 6061-T6铝合金中空薄壁型材双轴肩搅拌摩擦焊工具设计与工艺分析. 焊接学报. 2022(06): 88-95+118 . 本站查看
    12. 林森,韩晓辉,李刚卿,王鹏,赵存金,杨志斌. 高速列车铝合金MIG接头应力腐蚀失效研究. 中国安全科学学报. 2022(06): 115-122 . 百度学术
    13. 李帅贞,韩晓辉,吴来军,刘裕航,王鹏,宋晓国,檀财旺. 层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响. 材料导报. 2022(17): 157-161 . 百度学术
    14. 赵刚,颜旭,王立梅,柴煜,郝云飞. 焊接工艺参数对10mm厚2219铝合金双轴肩搅拌摩擦焊焊缝质量和性能的影响. 焊接. 2022(12): 13-19 . 百度学术
    15. 李小欣,郑延召,徐仲勋,王晓贞. 焊接参数对5A06铝合金搅拌摩擦焊接头性能的影响. 上海金属. 2021(03): 19-25 . 百度学术
    16. 李充,李朔晗,齐振国,孟祥晨,黄永宪. 对接间隙对双轴肩搅拌摩擦焊接头成形与性能的影响. 焊接. 2021(09): 5-9+27+61 . 百度学术
    17. 李志强,陈辰. 铝合金材料搅拌摩擦焊焊接参数概述. 焊接技术. 2021(11): 1-5 . 百度学术
    18. 方远方,张华,窦程亮. 2A12-T4/7A09-T6铝合金搅拌摩擦焊搭接接头性能分析. 焊接学报. 2020(01): 86-90+101-102 . 本站查看
    19. 李少峰,马成勇,宋志刚,安同邦. 800 MPa级高强钢焊接接头组织及力学性能. 焊接学报. 2020(05): 91-96+102 . 本站查看
    20. 吴进军,吕晋,杜兵,朱宇宏,张林. 基于专利大数据的焊接前沿热点技术挖掘. 焊接. 2019(12): 1-6+65 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  614
  • HTML全文浏览量:  21
  • PDF下载量:  2
  • 被引次数: 27
出版历程
  • 收稿日期:  2017-07-22

目录

    /

    返回文章
    返回