[1] |
He X, DebRoy T, Fuerschbach P W. Composition change of stainless steel during microjoining with short laser pulse[J]. Journal of Applied Physics, 2004, 96(8): 4547-4555.[2] Zhao H, DebRoy T. Weld metal composition change during conduction mode laser welding of aluminum alloy 5182[J]. Metallurgical and Materials Transactions B, 2001, 32(1): 163-172.[3] Dilthey U, Goumeniouk A, Lopota V, et al. Development of a theory for alloying element losses during laser beam welding[J]. Journal of Physics D-Applied Physics, 2001, 34(1): 81-86.[4] Jandaghi M, Parvin P, Torkamany M J, et al. Alloying element losses in pulsed Nd: YAG laser welding of stainless steel 316[J]. Journal of Physics D: Applied Physics, 2008, 41(23): 235503.[5] Jandaghi M, Parvin P, Torkamany M J, et al. Measurement of the composition change in Al5754 alloy during long pulsed Nd: YAG laser welding based on LIBS[J]. Journal of Physics D: Applied Physics, 2009, 42(20): 205301.[6] Zhao H, DebRoy T. Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding[J]. Journal of Applied Physics, 2003, 93(12): 10089-10096.[7] Rai R, Kelly S M, Martukanitz R P, et al. A convective heat-transfer model for partial and full penetration keyhole mode laser welding of a structural steel[J]. Metallurgical and Materials Transactions A, 2008, 39(1): 98-112.[8] Knight C J. Theoretical modeling of rapid surface vaporization with back pressure[J]. AIAA Journal, 1979, 17(5): 519-523.[9] Honig R E, Kramer D A. Physicochemical measurements in metal research[M]. New York: Interscience Publishers, 1970.[10] Hultgren R, Desai P D, Hawkins D T, et al. Selected values of the thermodynamic properties of the elements[M]. New Jersey: Wiley, 1973.[11] Schlunder E, Gnielinski V. Heat and mass transfer between surfaces and impinging jets[J]. Chemie Ingenieur Technik, 1967, 39: 578-584.[12] Turkdogan E T. Physical chemistry of high temperature technology[M]. New York: Academic press, New York, 1980.
|