高级检索

一种应用于激光焊接轨迹规划的改进蚁群算法

林哲骋,许力

林哲骋,许力. 一种应用于激光焊接轨迹规划的改进蚁群算法[J]. 焊接学报, 2018, 39(1): 107-110. DOI: 10.12073/j.hjxb.2018390024
引用本文: 林哲骋,许力. 一种应用于激光焊接轨迹规划的改进蚁群算法[J]. 焊接学报, 2018, 39(1): 107-110. DOI: 10.12073/j.hjxb.2018390024
LIN Zhecheng, XU Li. An improved ant colony optimization applied in programing laser welding path[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 107-110. DOI: 10.12073/j.hjxb.2018390024
Citation: LIN Zhecheng, XU Li. An improved ant colony optimization applied in programing laser welding path[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 107-110. DOI: 10.12073/j.hjxb.2018390024

一种应用于激光焊接轨迹规划的改进蚁群算法

An improved ant colony optimization applied in programing laser welding path

  • 摘要: 传统的焊接轨迹需通过手工示教获得,示教存在柔性差、效率低、轨迹复杂等缺点. 对工业生产中的典型焊接图元进行建模,提出了一种改进蚁群算法:使用混合型信息素更新策略,提高了收敛速度并能够避免陷入局部最优,从而在较短时间内获得最佳焊接路径. 结果表明,通过仿真和实际加工验证了算法的有效性,并成功运用在激光焊接系统中.
    Abstract: In the field of laser welding, welding trajectory was acquired by teaching traditionally. However, teaching has many disadvantages such as low efficiency and complex trajectory generating. By building modules of typical graphics, and a new improved ant colony optimization algorithm was proposed which adopt a new method to update pheromone so that rate of convergence can be increased and local convergence can be avoid , in that case, shortest paths will be find in a short time. What's more, this algorithm has applied in laser welding platform.
  • [1] Xi X C, Chen H, Zhao W,et al. Simplification of a G-code feeding path in roughing multi-axis EDM for shroudedblisks with a contour error constraint[J]. Journal of Manufacturing Science & Engineering, 2017, 139(11): 1-9.[2] Gasparetto A, Boscariol P, Lanzutti A,et al. Path planning and trajectory planning algorithms: a general overview[C]∥Motion and Operation Planning of Robotic Systems. Switzerland: Springer International Publishing, 2015: 3-27.[3] 刘彦鹏. 蚁群优化算法的理论研究及其应用[D]. 杭州: 浙江大学, 2007.[4] Mirjalili S, Mirjalili S M, Yang X S. Binary bat algorithm[J]. Neural Computing & Applications, 2014, 25(3-4): 663-681.[5] Omran M G H, Mahdavi M. Global-best harmony search[J]. Applied Mathematics & Computation, 2008, 198(2): 643-656.[6] 童安璐, 宗光华, 王 巍. 基于蚁群算法的机器人切割轨迹规划[J]. 机械工程与自动化, 2015(4): 191-193.Tong Anlu, Zong Guanghua, Wabg Wei. Robot cutting trajectory planning based on ant colony algorithm[J]. Mechanucal Enginnering & Automatiion, 2015(4): 191-193.[7] 陈 杰. 基于蚁群算法的机器人路径规划研究[D]. 南京: 南京理工大学, 2009.[8] 陈迎欣. 基于改进蚁群算法的车辆路径优化问题研究[J]. 计算机应用研究, 2012, 29(6): 2031-2034.Chen Yingxin. Study on VRP based on improved ant colony optimization[J]. Application Research of Computers, 2012, 29(6): 2031-2034.[9] Dorigo M, Stützle T. The ant colony optimization metaheuristic: algorithms, applications, and advances[J]. International, 2001(57): 251-285.[10] Yu B, Yang Z Z, Yao B. An improved ant colony optimization for vehicle routing problem[J]. European Journal of Operational Research, 2009, 196(1): 171-176.[11] 詹士昌, 徐 婕, 吴 俊. 蚁群算法中有关算法参数的最优选择[J]. 科技通报, 2003, 19(5): 381-386.Zhan Shichang, Xu Jie, Wu Jun. The optimal selection on the parameters of the ant colony algorithm[J]. Bulletin of Science and Technology, 2003, 19(5): 381-386.
  • 期刊类型引用(3)

    1. 庄明祥,刘永强,刘波,王维贤,龙健,张林杰. TC4钛合金承重框双道双侧不等熔深EBW接头组织与性能研究. 稀有金属材料与工程. 2021(08): 2933-2940 . 百度学术
    2. 杨世亮,李立航,戴浩,李智勇,赵桐. 电子束焊接对调质15CrMnMoVA高强钢组织及性能的影响. 金属热处理. 2021(10): 187-193 . 百度学术
    3. 洪敏,王善林,孙文君,吴鸣,徐勇. 航空高强钢电子束焊接研究现状. 焊接. 2020(07): 19-29+61-62 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  753
  • HTML全文浏览量:  10
  • PDF下载量:  2
  • 被引次数: 4
出版历程
  • 收稿日期:  2016-12-25

目录

    /

    返回文章
    返回