高级检索

低活化马氏体钢真空扩散焊接工艺

李萍1,2,丁方强2,薛克敏1

李萍1,2,丁方强2,薛克敏1. 低活化马氏体钢真空扩散焊接工艺[J]. 焊接学报, 2018, 39(1): 93-96. DOI: 10.12073/j.hjxb.2018390021
引用本文: 李萍1,2,丁方强2,薛克敏1. 低活化马氏体钢真空扩散焊接工艺[J]. 焊接学报, 2018, 39(1): 93-96. DOI: 10.12073/j.hjxb.2018390021
LI Ping1,2, DING Fangqiang2, XUE Kemin1. Study on vacuum diffusion welding technology of low activation martensitic steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 93-96. DOI: 10.12073/j.hjxb.2018390021
Citation: LI Ping1,2, DING Fangqiang2, XUE Kemin1. Study on vacuum diffusion welding technology of low activation martensitic steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 93-96. DOI: 10.12073/j.hjxb.2018390021

低活化马氏体钢真空扩散焊接工艺

Study on vacuum diffusion welding technology of low activation martensitic steel

  • 摘要: 在不同工艺参数下对低活化马氏体钢进行真空扩散焊接试验,通过比较试样显微组织形态、界面结合率及抗拉强度,探究焊接温度、焊接压力对接头组织演化及力学性能的影响. 结果表明,马氏体组织在扩散焊接过程中发生了奥氏体化现象,且焊接温度越高时,奥氏体化程度越高;在一定范围内,提高焊接温度及焊接压力均可增强原子的自扩散效果,从而提升焊缝接头的力学性能,其中焊接温度1 000 ℃,焊接压力20 MPa,保温时间120 min参数下焊接试样的抗拉强度达到1 013 MPa,焊接面结合状况良好.
    Abstract: Vacuum diffusion welding experiments were carried out for low activation martensitic steel at different parameters, the influence of welding temperature and pressure on microstructure evolution, mechanical properties of welding joints were studied by comparing the microstructure, the interfacial binding rate and the tensile strength of welding joints. The results show that martensitic has transformed to austenite in the diffusion welding process, and the phenomenon is more clearly with the increase of welding temperature. Atomic diffusion effect can be enhanced by improving the welding temperature or pressure in a certain range, as well as the mechanical properties of the welding joint. The tensile strength of welding joint reaches 1 013 MPa at 1 000 ℃ while the welding pressure is 20 MPa and welding time is 120 min, and interface condition is well-bonded.
  • [1] Huang Q, Li C, Wu Q,et al. Progress in development of CLAM steel and fabrication of small TBM in China[J]. Journal of Nuclear Materials, 2011, 417(s1-s3): 85-88.[2] 姜志忠, 黄继华, 胡 杰, 等. 聚变堆用CLAM钢激光焊接接头显微组织及性能[J]. 焊接学报, 2012, 33(2): 5-8.Jiang Zhizhong, Huang Jihua, Hu Jie,et al. Microstructure and mechanical properties of laser welded joints of CLAM steel used for fusion reactor[J]. Transactions of the China Welding Institution, 2012, 33(2): 5-8.[3] Huang Q. Development status of CLAM steel for fusion application[J]. Journal of Nuclear Materials, 2014, 455(s1-s3): 649-654.[4] 雷玉成, 顾康家, 朱 强, 等. 中国低活化马氏体钢熔化焊接头硬度与微观组织[J]. 焊接学报, 2009, 30(11): 9-12.Lei Yucheng, Gu Kangjia, Zhu Qiang,et al. Hardness and microstructure of China low activation martensitic steel fusion welded joint[J]. Transactions of the China Welding Institution, 2009, 30(11): 9-12.[5] Zhou X, Liu Y, Yu L,et al. Uniaxial diffusion bonding of CLAM/CLAM steels: Microstructure and mechanical performance[J]. Journal of Nuclear Materials, 2015, 461: 301-307.[6] 雷玉成, 张 鑫, 陈 玲, 等. 中国低活化马氏体钢TIG焊焊接接头的高温蠕变性能分析[J]. 焊接学报, 2016, 37(3): 5-8.Lei Yucheng, Zhang Xin, Chen Ling,et al. Analysis on creep properties of TIG welding joints of China low activation martensitic steel[J]. Transactions of the China Welding Institution, 2016, 37(3): 5-8.
  • 期刊类型引用(5)

    1. 许璠,李星,刘政,薄佑锋,陈昆宇. 焊点形状对GH3230高温合金激光焊接性能的影响. 中国激光. 2023(04): 59-66 . 百度学术
    2. 王金凤,李聪,史秋月,袁耀,刘峰. 低温烘烤对DP980双相钢激光拼焊板性能的影响. 热加工工艺. 2023(24): 152-156 . 百度学术
    3. 王海波,方俊飞,彭欢. 焊接热循环对热轧Giga钢板焊接粗晶区组织和韧性的影响. 热处理. 2021(02): 26-30 . 百度学术
    4. 李德民,李占明,孙晓峰,宋巍,宋鹏,郑必举. 低合金高强钢激光焊接的研究现状与展望. 材料热处理学报. 2020(11): 1-10 . 百度学术
    5. 卢长春,张显辉. 烧结机大型星轮齿板焊接修复技术. 焊接. 2020(12): 48-50+57+64 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  698
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 8
出版历程
  • 收稿日期:  2016-10-02

目录

    /

    返回文章
    返回