高级检索

基于试验设计与统计分析的双相钢激光焊工艺优化

赵大伟1,康与云1,易荣涛2,梁东杰3

赵大伟1,康与云1,易荣涛2,梁东杰3. 基于试验设计与统计分析的双相钢激光焊工艺优化[J]. 焊接学报, 2018, 39(1): 65-69. DOI: 10.12073/j.hjxb.2018390015
引用本文: 赵大伟1,康与云1,易荣涛2,梁东杰3. 基于试验设计与统计分析的双相钢激光焊工艺优化[J]. 焊接学报, 2018, 39(1): 65-69. DOI: 10.12073/j.hjxb.2018390015
ZHAO Dawei1, KANG Yuyun1, YI Rongtao2, LIANG Dongjie3. Research on process parameters optimization of laser welding for dual phase steel DP600[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 65-69. DOI: 10.12073/j.hjxb.2018390015
Citation: ZHAO Dawei1, KANG Yuyun1, YI Rongtao2, LIANG Dongjie3. Research on process parameters optimization of laser welding for dual phase steel DP600[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 65-69. DOI: 10.12073/j.hjxb.2018390015

基于试验设计与统计分析的双相钢激光焊工艺优化

Research on process parameters optimization of laser welding for dual phase steel DP600

  • 摘要: 为了优化激光焊接接头力学性能,利用试验设计方法对厚度为1.7 mm的DP600双相钢进行对接焊接试验,采用回归分析得到了激光焊接功率、焊接速度、离焦量、侧吹保护气体流量与接头抗拉强度之间的数学模型. 分析了焊接速度与侧吹气流量对焊缝抗拉强度的交互影响作用. 通过遗传算法优化该模型并得到了最优的焊接工艺参数组合,当焊接功率为1.7 kW,焊接速度为25 mm/s,侧吹气流量为2.4 m3/h,离焦量为-1 mm时焊缝的抗拉强度最大. 验证试验所测的焊缝抗拉强度值与模型预测值的相对误差在5%以内. 结果表明,文中研究可以有效的预测与优化厚度为1.7 mm的双相钢激光焊接质量.
    Abstract: Experimental design was employed for 1.7 mm DP600 dual phase steel in order to optimize the laser welded joint mechanical property. The laser power, welding speed, focal point position and side-blowing shield gas flow were chosen as the process parameters and the mathematical model between the tensile strength of joint and the four process parameters were obtained by using regression analysis. The interaction effects of the welding speed and side-blowing shield gas on welding quality were explored. The optimal combination of welding process parameters was achieved using genetic algorithm and the largest tensile strength of welding joint was obtained as the welding power was 1.7 kW, welding speed was 25 mm/s, side-blowing shield gas flow was 2.4 m3/h, focal point position was -1 mm. The results of validation experiments showed that the model generally had a good effect and high precision, and its average relative error was within 5%, this study can effectively forecast and optimize the laser welding quality for the dual phase steel with the thickness of 1.7 mm.
  • [1] 沈显峰, 黄文荣, 滕文华, 等. 辅助增强匙孔气流对激光焊接不锈钢组织和显微硬度的影响[J]. 焊接学报, 2013, 34(4): 19-22.Shen Xianfeng, Huang Wenrong, Teng Wenhua,et al. Effects of keyhole-assisted gas jet on microstructure and microhardness of stainless steel laser weld[J]. Transactions of the China Welding Institution, 2013, 34(4): 19-22.[2] 易荣涛, 赵大伟, 王元勋. 考虑相变影响的电阻点焊数字模拟[J]. 焊接学报, 2013, 34(10): 71-74.Yi Rongtao, Zhao Dawei, Wang Yuanxun. Numerical simulation of resistance spot welding considering phase transition effect[J]. Transactions of the China Welding Institution, 2013, 34(10): 71-74.[3] Rossinia M, Russo Spenaa P, Cortesea L,et al. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry[J]. Materials Science and Engineering: A, 2015, 628(25): 288-296.[4] Reisgen U, Schleser M, Mokrov O,et al. Optimization of laser welding of DP/TRIP steel sheets using statistical approach[J]. Optics & Laser Technology, 2012, 44(1): 255-262.[5] Sathiya P, Panneerselvam K, Abdul Jaleel M Y. Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm[J]. Materials & Design, 2012, 36(4): 490-498.[6] Olabi A G, Alsinani F O, Alabdulkarim A A,et al. Optimizing the CO2laser welding process for dissimilar materials[J]. Optics and Lasers in Engineering, 2013, 51(7): 832-839.[7] Patel C D. Experimental investigation and optimization of laser welding process parameters for mild steel[D]. Gujarat: Ganpat University, 2015.[8] Nakamura H, Kawahito Y, Nishimoto K,et al. Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium[J]. Journal of Laser Applications, 2015, 27(3): 1-10.[9] 杨东杰. 细管径侧吹气对激光焊接等离子体和熔池小孔影响的研究[D]. 上海: 上海交通大学, 2012.[10] 何正风, 张德丰, 周 品, 等. MATLAB概率与数理统计分析[M]. 北京: 机械工业出版社, 2012.[11] 罗 怡, 李春天, 周 银. 非等厚异种钢电阻点焊熔核成形的多元非线性回归模型[J]. 焊接学报, 2010, 31(11): 85-88.Luo Yi, Li Chuntian, Zhou Yin. Nonlinear multiple regression modeling of nugget formation for dissimilar steel welding with unequal thickness[J]. Transactions of the China Welding Institution, 2010, 31(11): 85-88.[12] Zhao D, Wang Y, Sheng S,et al. Multi-objective optimal design of small scale resistance spot welding process with principal component analysis and response surface methodology[J]. Journal of Intelligent Manufacturing, 2014, 25(6): 1335-1348.[13] Prrasad K S, Rao C S, Rao D N. Optimization of fusion zone grain size, hardness, and ultimate tensile strength of pulsed current micro plasma arc welded Inconel 625 sheets using genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(9-12): 2287-2295.
  • 期刊类型引用(6)

    1. 马晓阳,何亮,成应晋,王杏华,程彬,贺智涛. BP神经网络预测船用钢焊接接头力学性能研究. 金属制品. 2024(03): 59-63 . 百度学术
    2. 黄伟波,赵晓宇. 选区激光熔化成形参数对熔池尺寸的影响. 肇庆学院学报. 2023(05): 65-73+79 . 百度学术
    3. 马佳博,王成玥,陈峰. 加激光选区熔化成形技术的产品设计三维模型研究. 激光杂志. 2020(05): 134-138 . 百度学术
    4. 吕小青,王旭,徐连勇,荆洪阳,韩永典. 基于组合模型的MAG焊工艺参数多目标优化. 焊接学报. 2020(02): 6-11+97 . 本站查看
    5. 邢晓芳,贲强,周勇,路浩,韩佩. 基于回归分析的螺母凸焊工艺优化. 焊接学报. 2020(12): 91-96+102 . 本站查看
    6. 常峰博,高亮,陈宇翔,佟志光,李铭钰,滕征泰. 正交法激光焊接双相钢工艺优化. 应用激光. 2020(06): 1061-1066 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  769
  • HTML全文浏览量:  13
  • PDF下载量:  7
  • 被引次数: 9
出版历程
  • 收稿日期:  2016-06-25

目录

    /

    返回文章
    返回