高级检索

基于试验设计与统计分析的双相钢激光焊工艺优化

赵大伟1,康与云1,易荣涛2,梁东杰3

赵大伟1,康与云1,易荣涛2,梁东杰3. 基于试验设计与统计分析的双相钢激光焊工艺优化[J]. 焊接学报, 2018, 39(1): 65-69. DOI: 10.12073/j.hjxb.2018390015
引用本文: 赵大伟1,康与云1,易荣涛2,梁东杰3. 基于试验设计与统计分析的双相钢激光焊工艺优化[J]. 焊接学报, 2018, 39(1): 65-69. DOI: 10.12073/j.hjxb.2018390015
ZHAO Dawei1, KANG Yuyun1, YI Rongtao2, LIANG Dongjie3. Research on process parameters optimization of laser welding for dual phase steel DP600[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 65-69. DOI: 10.12073/j.hjxb.2018390015
Citation: ZHAO Dawei1, KANG Yuyun1, YI Rongtao2, LIANG Dongjie3. Research on process parameters optimization of laser welding for dual phase steel DP600[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 65-69. DOI: 10.12073/j.hjxb.2018390015

基于试验设计与统计分析的双相钢激光焊工艺优化

Research on process parameters optimization of laser welding for dual phase steel DP600

  • 摘要: 为了优化激光焊接接头力学性能,利用试验设计方法对厚度为1.7 mm的DP600双相钢进行对接焊接试验,采用回归分析得到了激光焊接功率、焊接速度、离焦量、侧吹保护气体流量与接头抗拉强度之间的数学模型. 分析了焊接速度与侧吹气流量对焊缝抗拉强度的交互影响作用. 通过遗传算法优化该模型并得到了最优的焊接工艺参数组合,当焊接功率为1.7 kW,焊接速度为25 mm/s,侧吹气流量为2.4 m3/h,离焦量为-1 mm时焊缝的抗拉强度最大. 验证试验所测的焊缝抗拉强度值与模型预测值的相对误差在5%以内. 结果表明,文中研究可以有效的预测与优化厚度为1.7 mm的双相钢激光焊接质量.
    Abstract: Experimental design was employed for 1.7 mm DP600 dual phase steel in order to optimize the laser welded joint mechanical property. The laser power, welding speed, focal point position and side-blowing shield gas flow were chosen as the process parameters and the mathematical model between the tensile strength of joint and the four process parameters were obtained by using regression analysis. The interaction effects of the welding speed and side-blowing shield gas on welding quality were explored. The optimal combination of welding process parameters was achieved using genetic algorithm and the largest tensile strength of welding joint was obtained as the welding power was 1.7 kW, welding speed was 25 mm/s, side-blowing shield gas flow was 2.4 m3/h, focal point position was -1 mm. The results of validation experiments showed that the model generally had a good effect and high precision, and its average relative error was within 5%, this study can effectively forecast and optimize the laser welding quality for the dual phase steel with the thickness of 1.7 mm.
  • [1] 沈显峰, 黄文荣, 滕文华, 等. 辅助增强匙孔气流对激光焊接不锈钢组织和显微硬度的影响[J]. 焊接学报, 2013, 34(4): 19-22.Shen Xianfeng, Huang Wenrong, Teng Wenhua,et al. Effects of keyhole-assisted gas jet on microstructure and microhardness of stainless steel laser weld[J]. Transactions of the China Welding Institution, 2013, 34(4): 19-22.[2] 易荣涛, 赵大伟, 王元勋. 考虑相变影响的电阻点焊数字模拟[J]. 焊接学报, 2013, 34(10): 71-74.Yi Rongtao, Zhao Dawei, Wang Yuanxun. Numerical simulation of resistance spot welding considering phase transition effect[J]. Transactions of the China Welding Institution, 2013, 34(10): 71-74.[3] Rossinia M, Russo Spenaa P, Cortesea L,et al. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry[J]. Materials Science and Engineering: A, 2015, 628(25): 288-296.[4] Reisgen U, Schleser M, Mokrov O,et al. Optimization of laser welding of DP/TRIP steel sheets using statistical approach[J]. Optics & Laser Technology, 2012, 44(1): 255-262.[5] Sathiya P, Panneerselvam K, Abdul Jaleel M Y. Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm[J]. Materials & Design, 2012, 36(4): 490-498.[6] Olabi A G, Alsinani F O, Alabdulkarim A A,et al. Optimizing the CO2laser welding process for dissimilar materials[J]. Optics and Lasers in Engineering, 2013, 51(7): 832-839.[7] Patel C D. Experimental investigation and optimization of laser welding process parameters for mild steel[D]. Gujarat: Ganpat University, 2015.[8] Nakamura H, Kawahito Y, Nishimoto K,et al. Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium[J]. Journal of Laser Applications, 2015, 27(3): 1-10.[9] 杨东杰. 细管径侧吹气对激光焊接等离子体和熔池小孔影响的研究[D]. 上海: 上海交通大学, 2012.[10] 何正风, 张德丰, 周 品, 等. MATLAB概率与数理统计分析[M]. 北京: 机械工业出版社, 2012.[11] 罗 怡, 李春天, 周 银. 非等厚异种钢电阻点焊熔核成形的多元非线性回归模型[J]. 焊接学报, 2010, 31(11): 85-88.Luo Yi, Li Chuntian, Zhou Yin. Nonlinear multiple regression modeling of nugget formation for dissimilar steel welding with unequal thickness[J]. Transactions of the China Welding Institution, 2010, 31(11): 85-88.[12] Zhao D, Wang Y, Sheng S,et al. Multi-objective optimal design of small scale resistance spot welding process with principal component analysis and response surface methodology[J]. Journal of Intelligent Manufacturing, 2014, 25(6): 1335-1348.[13] Prrasad K S, Rao C S, Rao D N. Optimization of fusion zone grain size, hardness, and ultimate tensile strength of pulsed current micro plasma arc welded Inconel 625 sheets using genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(9-12): 2287-2295.
  • 期刊类型引用(20)

    1. 马霄锋,杨冠华,高超,钮旭晶,王玮彤. 6005A-T6铝合金对搭接FSW接头微观组织与力学性能. 焊接技术. 2025(03): 8-13+145 . 百度学术
    2. 邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 . 百度学术
    3. 蹇文轩,丛孟启,雷卫宁. 基于搅拌摩擦加工技术的镁基复合材料研究进展. 机械工程学报. 2024(08): 48-64 . 百度学术
    4. 冯家铖,宫文彪,鞠川,李于朋,孙雨萌,朱芮. 2024铝合金双轴肩搅拌摩擦焊接头热循环及组织特征. 吉林大学学报(工学版). 2024(11): 3184-3191 . 百度学术
    5. 邓建峰,郭伟强,徐晓霞,王博,灰辉,窦思忠,黄望业. Comprehensive study of microstructure and mechanical properties of friction stir welded 5182-O/HC260YD + Z lap joint. China Welding. 2023(01): 46-52 . 百度学术
    6. 谢宇,李兴帅,付炳欣. 轨道交通铝合金车体双轴肩搅拌摩擦焊研究现状与展望. 机车车辆工艺. 2023(03): 18-20+28 . 百度学术
    7. 尹德猛,李充,姚肖洁,郝文波,王崴,杨彦龙. 6082-T6铝合金双轴肩搅拌摩擦焊接头成形及力学性能. 焊接. 2023(06): 38-43 . 百度学术
    8. 鲁克锋,殷凤仕,王文宇,滕涛,樊世冲,刘亚凡,王鸿琪,朱建,任智强. 铝合金搅拌摩擦焊接头缺陷及焊件结构问题控制策略的研究进展. 表面技术. 2023(07): 55-79 . 百度学术
    9. 温泉,李文亚,吴雪猛,任寿伟,赵静. AA6056双轴肩搅拌摩擦焊接头非均匀性分析. 焊接学报. 2023(09): 88-94+134 . 本站查看
    10. 马佳良,曾泽群,孙屹博,杨鑫华. 工艺参数对铝合金搅拌摩擦焊变形和残余应力的影响及优化. 焊接技术. 2022(01): 46-52+114 . 百度学术
    11. 张颖川,马国栋,代鹏,王敬水,金炜. 6061-T6铝合金中空薄壁型材双轴肩搅拌摩擦焊工具设计与工艺分析. 焊接学报. 2022(06): 88-95+118 . 本站查看
    12. 林森,韩晓辉,李刚卿,王鹏,赵存金,杨志斌. 高速列车铝合金MIG接头应力腐蚀失效研究. 中国安全科学学报. 2022(06): 115-122 . 百度学术
    13. 李帅贞,韩晓辉,吴来军,刘裕航,王鹏,宋晓国,檀财旺. 层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响. 材料导报. 2022(17): 157-161 . 百度学术
    14. 赵刚,颜旭,王立梅,柴煜,郝云飞. 焊接工艺参数对10mm厚2219铝合金双轴肩搅拌摩擦焊焊缝质量和性能的影响. 焊接. 2022(12): 13-19 . 百度学术
    15. 李小欣,郑延召,徐仲勋,王晓贞. 焊接参数对5A06铝合金搅拌摩擦焊接头性能的影响. 上海金属. 2021(03): 19-25 . 百度学术
    16. 李充,李朔晗,齐振国,孟祥晨,黄永宪. 对接间隙对双轴肩搅拌摩擦焊接头成形与性能的影响. 焊接. 2021(09): 5-9+27+61 . 百度学术
    17. 李志强,陈辰. 铝合金材料搅拌摩擦焊焊接参数概述. 焊接技术. 2021(11): 1-5 . 百度学术
    18. 方远方,张华,窦程亮. 2A12-T4/7A09-T6铝合金搅拌摩擦焊搭接接头性能分析. 焊接学报. 2020(01): 86-90+101-102 . 本站查看
    19. 李少峰,马成勇,宋志刚,安同邦. 800 MPa级高强钢焊接接头组织及力学性能. 焊接学报. 2020(05): 91-96+102 . 本站查看
    20. 吴进军,吕晋,杜兵,朱宇宏,张林. 基于专利大数据的焊接前沿热点技术挖掘. 焊接. 2019(12): 1-6+65 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  770
  • HTML全文浏览量:  13
  • PDF下载量:  7
  • 被引次数: 27
出版历程
  • 收稿日期:  2016-06-25

目录

    /

    返回文章
    返回