摆动电弧传感的窄坡口GMAW过程系统建模和仿真
System modeling and simulation of narrow groove GMAW process for oscillating arc sensing
-
摘要: 为了研究窄坡口对焊接过程的影响规律,根据焊接的能量平衡和熔滴平衡等原理对基于摆动电弧传感的GMAW系统进行数值仿真. 针对焊炬高度的大小随着焊炬在坡口中的摆动不断变化,建立了包括焊炬摆动、电弧长度、电弧非线性负载及弧焊电源-电弧四个子系统的数学模型. 并将此数学模型转换为Matlab/simulink环境下,涵盖整个焊接回路的GMAW系统动态特征仿真模型. 结果表明,当焊接工艺参数相同时,运行系统仿真模型,可以获得和实际焊接试验基本相同的电流、电压波形数据.Abstract: In order to study the influence of narrow groove on the welding process, the numerical simulation of GMAW systems based on the oscillating arc sensor has been studied according to the principle of weding energy balance and droplet balance. The mathematical model of four subsystems, including a welding torch oscillation, an arc length, nonlinear arc load and arc welding power source arc, has been built according to the size of the torch height is changing with torch oscillation in the groove. And the mathematical model is transformed into a GMAW system dynamic characteristic simulation model which covers the whole welding loop under Matlab/simulink environment. The results show that when the welding parameters are the same, by operating the system simulation model, the data of the current and voltage waveforms can be obtained which are basically the same as the actual experiments.
-
Keywords:
- swing arc sensor /
- narrow groove /
- mathematical model /
- simulation
-
-
[1] 吴家洲, 张 华, 李玉龙, 等. 洛伦兹力计算及其对GMAW焊接模拟的影响[J]. 焊接学报, 2016, 37(10): 89-92.Wu Jiazhou, Zhang Hua, Li Yulong,et al. Lorenz force calculation and its influence on GMAW welding simulation[J]. Transactions of the China Welding Institution, 2016, 37(10): 89-92.[2] Ushio M, Mao W. Modelling of an arc sensor for DC MIG/MAG welding in open arc mode: study of improvement of sensitivity and reliability of arc sensors in GMA welding (1st Report)[J]. Journal of Japan Welding Society, 1996,14(1): 99-107.[3] 何建萍, 华学明, 吴毅雄, 等. GMAW 短路过渡动态模型的建立[J]. 焊接学报, 2006, 27(9): 77-80.He Jianping, Hua Xueming, Wu Yixiong,et al. Dynamic model of GMAW system with short cirtuiting trans[J]. Transactions of the China Welding Institution, 2006, 27(9): 77-80.[4] 殷树言. 气体保护焊工艺基础[M]. 北京: 机械工业出版社, 2007.[5] 周灿丰, 吴金锋, 罗 雨, 等. 基于高速摆动电弧传感器的GMAW焊缝跟踪技术研究[J]. 焊接, 2013 (9): 14-17.Zhou Canfeng, Wu Jinfeng, Luo Yu,et al. GMAW seam tracking technology research based on the high-speed swing arc sensor[J]. Welding & Joining, 2013(9): 14-17.[6] Choi J H, Lee J Y, Yoo C D. simulation of dynamic behavior in a GMAW system[J]. Welding Journal New York, 2001, 80(10): 239s-246s.[7] 冯曰海, 卢振洋, 刘 嘉, 等. 全数字控制CO2焊Matlab/Simulink建模与仿真[J]. 焊接学报, 2005, 26(7): 27-32.Feng Yuehai, Lu Zhenyang, Liu Jia,et al. Modeling and simulation of full digital control CO2welding matlab/simulink [J]. Transactions of the China Welding Institution,2005, 26(7): 27-32. -
期刊类型引用(6)
1. 马晓阳,何亮,成应晋,王杏华,程彬,贺智涛. BP神经网络预测船用钢焊接接头力学性能研究. 金属制品. 2024(03): 59-63 . 百度学术
2. 黄伟波,赵晓宇. 选区激光熔化成形参数对熔池尺寸的影响. 肇庆学院学报. 2023(05): 65-73+79 . 百度学术
3. 马佳博,王成玥,陈峰. 加激光选区熔化成形技术的产品设计三维模型研究. 激光杂志. 2020(05): 134-138 . 百度学术
4. 吕小青,王旭,徐连勇,荆洪阳,韩永典. 基于组合模型的MAG焊工艺参数多目标优化. 焊接学报. 2020(02): 6-11+97 . 本站查看
5. 邢晓芳,贲强,周勇,路浩,韩佩. 基于回归分析的螺母凸焊工艺优化. 焊接学报. 2020(12): 91-96+102 . 本站查看
6. 常峰博,高亮,陈宇翔,佟志光,李铭钰,滕征泰. 正交法激光焊接双相钢工艺优化. 应用激光. 2020(06): 1061-1066 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 897
- HTML全文浏览量: 8
- PDF下载量: 0
- 被引次数: 9