高级检索

摆动电弧传感的窄坡口GMAW过程系统建模和仿真

罗雨1,张中亮1,2,周灿丰1,2,焦向东1,2,杨成功1

罗雨1,张中亮1,2,周灿丰1,2,焦向东1,2,杨成功1. 摆动电弧传感的窄坡口GMAW过程系统建模和仿真[J]. 焊接学报, 2018, 39(1): 5-8. DOI: 10.12073/j.hjxb.2018390002
引用本文: 罗雨1,张中亮1,2,周灿丰1,2,焦向东1,2,杨成功1. 摆动电弧传感的窄坡口GMAW过程系统建模和仿真[J]. 焊接学报, 2018, 39(1): 5-8. DOI: 10.12073/j.hjxb.2018390002
LUO Yu1, ZHANG Zhongliang1,2, ZHOU Canfeng1,2, JIAO Xiangdong1,2, YANG Chenggong1. System modeling and simulation of narrow groove GMAW process for oscillating arc sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 5-8. DOI: 10.12073/j.hjxb.2018390002
Citation: LUO Yu1, ZHANG Zhongliang1,2, ZHOU Canfeng1,2, JIAO Xiangdong1,2, YANG Chenggong1. System modeling and simulation of narrow groove GMAW process for oscillating arc sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 5-8. DOI: 10.12073/j.hjxb.2018390002

摆动电弧传感的窄坡口GMAW过程系统建模和仿真

System modeling and simulation of narrow groove GMAW process for oscillating arc sensing

  • 摘要: 为了研究窄坡口对焊接过程的影响规律,根据焊接的能量平衡和熔滴平衡等原理对基于摆动电弧传感的GMAW系统进行数值仿真. 针对焊炬高度的大小随着焊炬在坡口中的摆动不断变化,建立了包括焊炬摆动、电弧长度、电弧非线性负载及弧焊电源-电弧四个子系统的数学模型. 并将此数学模型转换为Matlab/simulink环境下,涵盖整个焊接回路的GMAW系统动态特征仿真模型. 结果表明,当焊接工艺参数相同时,运行系统仿真模型,可以获得和实际焊接试验基本相同的电流、电压波形数据.
    Abstract: In order to study the influence of narrow groove on the welding process, the numerical simulation of GMAW systems based on the oscillating arc sensor has been studied according to the principle of weding energy balance and droplet balance. The mathematical model of four subsystems, including a welding torch oscillation, an arc length, nonlinear arc load and arc welding power source arc, has been built according to the size of the torch height is changing with torch oscillation in the groove. And the mathematical model is transformed into a GMAW system dynamic characteristic simulation model which covers the whole welding loop under Matlab/simulink environment. The results show that when the welding parameters are the same, by operating the system simulation model, the data of the current and voltage waveforms can be obtained which are basically the same as the actual experiments.
  • [1] 吴家洲, 张 华, 李玉龙, 等. 洛伦兹力计算及其对GMAW焊接模拟的影响[J]. 焊接学报, 2016, 37(10): 89-92.Wu Jiazhou, Zhang Hua, Li Yulong,et al. Lorenz force calculation and its influence on GMAW welding simulation[J]. Transactions of the China Welding Institution, 2016, 37(10): 89-92.[2] Ushio M, Mao W. Modelling of an arc sensor for DC MIG/MAG welding in open arc mode: study of improvement of sensitivity and reliability of arc sensors in GMA welding (1st Report)[J]. Journal of Japan Welding Society, 1996,14(1): 99-107.[3] 何建萍, 华学明, 吴毅雄, 等. GMAW 短路过渡动态模型的建立[J]. 焊接学报, 2006, 27(9): 77-80.He Jianping, Hua Xueming, Wu Yixiong,et al. Dynamic model of GMAW system with short cirtuiting trans[J]. Transactions of the China Welding Institution, 2006, 27(9): 77-80.[4] 殷树言. 气体保护焊工艺基础[M]. 北京: 机械工业出版社, 2007.[5] 周灿丰, 吴金锋, 罗 雨, 等. 基于高速摆动电弧传感器的GMAW焊缝跟踪技术研究[J]. 焊接, 2013 (9): 14-17.Zhou Canfeng, Wu Jinfeng, Luo Yu,et al. GMAW seam tracking technology research based on the high-speed swing arc sensor[J]. Welding & Joining, 2013(9): 14-17.[6] Choi J H, Lee J Y, Yoo C D. simulation of dynamic behavior in a GMAW system[J]. Welding Journal New York, 2001, 80(10): 239s-246s.[7] 冯曰海, 卢振洋, 刘 嘉, 等. 全数字控制CO2焊Matlab/Simulink建模与仿真[J]. 焊接学报, 2005, 26(7): 27-32.Feng Yuehai, Lu Zhenyang, Liu Jia,et al. Modeling and simulation of full digital control CO2welding matlab/simulink [J]. Transactions of the China Welding Institution,2005, 26(7): 27-32.
  • 期刊类型引用(20)

    1. 马霄锋,杨冠华,高超,钮旭晶,王玮彤. 6005A-T6铝合金对搭接FSW接头微观组织与力学性能. 焊接技术. 2025(03): 8-13+145 . 百度学术
    2. 邹阳,魏巍,范悦,王泽震,王强,赵亮. 铝合金搅拌摩擦焊工艺研究进展. 热加工工艺. 2024(03): 7-13 . 百度学术
    3. 蹇文轩,丛孟启,雷卫宁. 基于搅拌摩擦加工技术的镁基复合材料研究进展. 机械工程学报. 2024(08): 48-64 . 百度学术
    4. 冯家铖,宫文彪,鞠川,李于朋,孙雨萌,朱芮. 2024铝合金双轴肩搅拌摩擦焊接头热循环及组织特征. 吉林大学学报(工学版). 2024(11): 3184-3191 . 百度学术
    5. 邓建峰,郭伟强,徐晓霞,王博,灰辉,窦思忠,黄望业. Comprehensive study of microstructure and mechanical properties of friction stir welded 5182-O/HC260YD + Z lap joint. China Welding. 2023(01): 46-52 . 百度学术
    6. 谢宇,李兴帅,付炳欣. 轨道交通铝合金车体双轴肩搅拌摩擦焊研究现状与展望. 机车车辆工艺. 2023(03): 18-20+28 . 百度学术
    7. 尹德猛,李充,姚肖洁,郝文波,王崴,杨彦龙. 6082-T6铝合金双轴肩搅拌摩擦焊接头成形及力学性能. 焊接. 2023(06): 38-43 . 百度学术
    8. 鲁克锋,殷凤仕,王文宇,滕涛,樊世冲,刘亚凡,王鸿琪,朱建,任智强. 铝合金搅拌摩擦焊接头缺陷及焊件结构问题控制策略的研究进展. 表面技术. 2023(07): 55-79 . 百度学术
    9. 温泉,李文亚,吴雪猛,任寿伟,赵静. AA6056双轴肩搅拌摩擦焊接头非均匀性分析. 焊接学报. 2023(09): 88-94+134 . 本站查看
    10. 马佳良,曾泽群,孙屹博,杨鑫华. 工艺参数对铝合金搅拌摩擦焊变形和残余应力的影响及优化. 焊接技术. 2022(01): 46-52+114 . 百度学术
    11. 张颖川,马国栋,代鹏,王敬水,金炜. 6061-T6铝合金中空薄壁型材双轴肩搅拌摩擦焊工具设计与工艺分析. 焊接学报. 2022(06): 88-95+118 . 本站查看
    12. 林森,韩晓辉,李刚卿,王鹏,赵存金,杨志斌. 高速列车铝合金MIG接头应力腐蚀失效研究. 中国安全科学学报. 2022(06): 115-122 . 百度学术
    13. 李帅贞,韩晓辉,吴来军,刘裕航,王鹏,宋晓国,檀财旺. 层道排布对6005A铝合金MIG焊接头微观组织及力学性能的影响. 材料导报. 2022(17): 157-161 . 百度学术
    14. 赵刚,颜旭,王立梅,柴煜,郝云飞. 焊接工艺参数对10mm厚2219铝合金双轴肩搅拌摩擦焊焊缝质量和性能的影响. 焊接. 2022(12): 13-19 . 百度学术
    15. 李小欣,郑延召,徐仲勋,王晓贞. 焊接参数对5A06铝合金搅拌摩擦焊接头性能的影响. 上海金属. 2021(03): 19-25 . 百度学术
    16. 李充,李朔晗,齐振国,孟祥晨,黄永宪. 对接间隙对双轴肩搅拌摩擦焊接头成形与性能的影响. 焊接. 2021(09): 5-9+27+61 . 百度学术
    17. 李志强,陈辰. 铝合金材料搅拌摩擦焊焊接参数概述. 焊接技术. 2021(11): 1-5 . 百度学术
    18. 方远方,张华,窦程亮. 2A12-T4/7A09-T6铝合金搅拌摩擦焊搭接接头性能分析. 焊接学报. 2020(01): 86-90+101-102 . 本站查看
    19. 李少峰,马成勇,宋志刚,安同邦. 800 MPa级高强钢焊接接头组织及力学性能. 焊接学报. 2020(05): 91-96+102 . 本站查看
    20. 吴进军,吕晋,杜兵,朱宇宏,张林. 基于专利大数据的焊接前沿热点技术挖掘. 焊接. 2019(12): 1-6+65 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  897
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 27
出版历程
  • 收稿日期:  2016-07-20

目录

    /

    返回文章
    返回